chore: move dataset to submodule

This commit is contained in:
Laureηt 2023-02-02 11:14:52 +01:00
parent 1d09b753ae
commit 89f9112fca
Signed by: Laurent
SSH key fingerprint: SHA256:kZEpW8cMJ54PDeCvOhzreNr4FSh6R13CMGH/POoO8DI
4 changed files with 13 additions and 89 deletions

3
.gitmodules vendored Normal file
View file

@ -0,0 +1,3 @@
[submodule "aiornot_datasets"]
path = aiornot_datasets
url = https://huggingface.co/datasets/tocard-inc/aiornot

1
aiornot_datasets Submodule

@ -0,0 +1 @@
Subproject commit a90618df992a19c775b6b0fb7e0de0fd45a4d505

View file

@ -1,88 +0,0 @@
"""Dataset class AI or NOT HuggingFace competition."""
import csv
import pathlib
from typing import Optional
import datasets
_VERSION = "1.0.0"
_GIT_COMMIT_REVISION = "b843a82bd712648b2fe0dc043cf8a04475491d38"
_BASE_URLS = {
"train": f"https://huggingface.co/datasets/competitions/aiornot/resolve/{_GIT_COMMIT_REVISION}/train.zip",
"test": f"https://huggingface.co/datasets/competitions/aiornot/resolve/{_GIT_COMMIT_REVISION}/test.zip",
"csv": f"https://huggingface.co/datasets/competitions/aiornot/resolve/{_GIT_COMMIT_REVISION}/train.csv",
}
_HOMEPAGE = "https://huggingface.co/spaces/competitions/aiornot"
_DESCRIPTION = """
The dataset consists of approximately 31000 images, some of which have been generated by ai.
Your task is to build a model that can identify ai generated images.
Please use the community tab for discussion and questions.
"""
_NAMES = [
"NOT",
"AI",
]
class aiornot(datasets.GeneratorBasedBuilder):
"""Food-101 Images dataset."""
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
version=_VERSION,
features=datasets.Features(
{
"image": datasets.Image(),
"label": datasets.ClassLabel(names=_NAMES),
}
),
supervised_keys=("image", "label"),
homepage=_HOMEPAGE,
task_templates=[datasets.tasks.ImageClassification(image_column="image", label_column="label")],
)
def _split_generators(self, dl_manager):
train_path = pathlib.Path(dl_manager.download_and_extract(_BASE_URLS["train"]))
test_path = pathlib.Path(dl_manager.download_and_extract(_BASE_URLS["test"]))
csv_path = pathlib.Path(dl_manager.download(_BASE_URLS["csv"]))
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"data_dir": train_path / "train",
"csv_file": csv_path,
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"data_dir": test_path / "test",
},
),
]
def _generate_examples(self, data_dir: pathlib.Path, csv_file: Optional[pathlib.Path] = None):
"""Generate images and labels for splits."""
if csv_file is not None:
with open(csv_file, "r") as f:
reader = csv.reader(f)
next(reader)
for index, row in enumerate(reader):
yield index, {
"image": str(data_dir / row[0]),
"label": row[1],
}
else:
rglob = pathlib.Path(data_dir).rglob("*.jpg")
for index, filepath in enumerate(rglob):
yield index, {
"image": str(filepath),
"label": -1,
}

View file

@ -3,9 +3,17 @@ import matplotlib.pyplot as plt
dataset = datasets.load_dataset("src/dataset.py")
labels = dataset["train"].features["label"].names
print(labels)
id2label = {k: v for k, v in enumerate(labels)}
label2id = {v: k for k, v in enumerate(labels)}
print(label2id)
print(id2label)
idx = 0
plt.imshow(dataset["train"][idx]["image"])
plt.title(dataset["train"].features["label"].names[dataset["train"][idx]["label"]])
plt.title(id2label[dataset["train"][idx]["label"]])
plt.show()
plt.imshow(dataset["test"][idx]["image"])