2023-07-03 19:12:22 +00:00
|
|
|
import Diffusers
|
2023-07-05 19:13:26 +00:00
|
|
|
using Flux
|
2023-07-03 19:12:22 +00:00
|
|
|
using Random
|
|
|
|
using Plots
|
2023-07-23 12:48:15 +00:00
|
|
|
using ProgressMeter
|
2023-07-03 19:12:22 +00:00
|
|
|
|
2023-07-24 19:05:47 +00:00
|
|
|
# utils
|
|
|
|
include("Embeddings.jl")
|
|
|
|
include("ConditionalChain.jl")
|
|
|
|
|
2023-07-03 19:12:22 +00:00
|
|
|
function make_spiral(rng::AbstractRNG, n_samples::Int=1000)
|
|
|
|
t_min = 1.5π
|
|
|
|
t_max = 4.5π
|
|
|
|
|
|
|
|
t = rand(rng, n_samples) * (t_max - t_min) .+ t_min
|
|
|
|
|
|
|
|
x = t .* cos.(t)
|
|
|
|
y = t .* sin.(t)
|
|
|
|
|
|
|
|
permutedims([x y], (2, 1))
|
|
|
|
end
|
|
|
|
|
|
|
|
make_spiral(n_samples::Int=1000) = make_spiral(Random.GLOBAL_RNG, n_samples)
|
|
|
|
|
|
|
|
function normalize_zero_to_one(x)
|
|
|
|
x_min, x_max = extrema(x)
|
|
|
|
x_norm = (x .- x_min) ./ (x_max - x_min)
|
|
|
|
x_norm
|
|
|
|
end
|
|
|
|
|
|
|
|
function normalize_neg_one_to_one(x)
|
|
|
|
2 * normalize_zero_to_one(x) .- 1
|
|
|
|
end
|
|
|
|
|
|
|
|
n_samples = 1000
|
|
|
|
data = normalize_neg_one_to_one(make_spiral(n_samples))
|
|
|
|
scatter(data[1, :], data[2, :],
|
|
|
|
alpha=0.5,
|
|
|
|
aspectratio=:equal,
|
|
|
|
)
|
|
|
|
|
2023-07-05 19:13:26 +00:00
|
|
|
num_timesteps = 100
|
2023-07-03 19:12:22 +00:00
|
|
|
scheduler = Diffusers.DDPM(
|
|
|
|
Vector{Float64},
|
|
|
|
Diffusers.cosine_beta_schedule(num_timesteps, 0.999f0, 0.001f0),
|
|
|
|
)
|
|
|
|
|
2023-07-05 19:13:26 +00:00
|
|
|
noise = randn(size(data))
|
2023-07-03 19:12:22 +00:00
|
|
|
|
2023-07-23 12:48:15 +00:00
|
|
|
anim = @animate for i in cat(1:num_timesteps, repeat([num_timesteps], 50), dims=1)
|
2023-07-05 19:13:26 +00:00
|
|
|
noisy_data = Diffusers.add_noise(scheduler, data, noise, [i])
|
2023-07-03 19:12:22 +00:00
|
|
|
scatter(noise[1, :], noise[2, :],
|
|
|
|
alpha=0.1,
|
|
|
|
aspectratio=:equal,
|
|
|
|
label="noise",
|
2023-07-05 19:13:26 +00:00
|
|
|
legend=:outertopright,
|
2023-07-03 19:12:22 +00:00
|
|
|
)
|
|
|
|
scatter!(noisy_data[1, :], noisy_data[2, :],
|
|
|
|
alpha=0.5,
|
|
|
|
aspectratio=:equal,
|
|
|
|
label="noisy data",
|
|
|
|
)
|
|
|
|
scatter!(data[1, :], data[2, :],
|
|
|
|
alpha=0.5,
|
|
|
|
aspectratio=:equal,
|
|
|
|
label="data",
|
|
|
|
)
|
|
|
|
i_str = lpad(i, 3, "0")
|
|
|
|
title!("t = $(i_str)")
|
|
|
|
xlims!(-3, 3)
|
|
|
|
ylims!(-3, 3)
|
|
|
|
end
|
|
|
|
|
|
|
|
gif(anim, "swissroll.gif", fps=50)
|
2023-07-05 19:13:26 +00:00
|
|
|
|
|
|
|
d_hid = 32
|
2023-07-24 19:05:47 +00:00
|
|
|
model = ConditionalChain(
|
2023-07-05 19:13:26 +00:00
|
|
|
Parallel(
|
|
|
|
.+,
|
|
|
|
Dense(2, d_hid),
|
|
|
|
Chain(
|
2023-07-24 19:05:47 +00:00
|
|
|
SinusoidalPositionEmbedding(num_timesteps, d_hid),
|
2023-07-05 19:13:26 +00:00
|
|
|
Dense(d_hid, d_hid))
|
|
|
|
),
|
|
|
|
relu,
|
|
|
|
Parallel(
|
|
|
|
.+,
|
|
|
|
Dense(d_hid, d_hid),
|
|
|
|
Chain(
|
2023-07-24 19:05:47 +00:00
|
|
|
SinusoidalPositionEmbedding(num_timesteps, d_hid),
|
2023-07-05 19:13:26 +00:00
|
|
|
Dense(d_hid, d_hid))
|
|
|
|
),
|
|
|
|
relu,
|
|
|
|
Parallel(
|
|
|
|
.+,
|
|
|
|
Dense(d_hid, d_hid),
|
|
|
|
Chain(
|
2023-07-24 19:05:47 +00:00
|
|
|
SinusoidalPositionEmbedding(num_timesteps, d_hid),
|
2023-07-05 19:13:26 +00:00
|
|
|
Dense(d_hid, d_hid))
|
|
|
|
),
|
|
|
|
relu,
|
|
|
|
Dense(d_hid, 2),
|
|
|
|
)
|
|
|
|
|
|
|
|
model(data, [100])
|
|
|
|
|
2023-07-25 19:01:56 +00:00
|
|
|
num_epochs = 1000
|
2023-07-05 19:13:26 +00:00
|
|
|
loss = Flux.Losses.mse
|
2023-07-23 12:48:15 +00:00
|
|
|
opt = Flux.setup(Adam(0.0001), model)
|
|
|
|
dataloader = Flux.DataLoader(data |> cpu; batchsize=32, shuffle=true);
|
|
|
|
progress = Progress(num_epochs; desc="training", showspeed=true)
|
2023-07-05 19:13:26 +00:00
|
|
|
for epoch = 1:num_epochs
|
|
|
|
params = Flux.params(model)
|
|
|
|
for data in dataloader
|
2023-07-23 12:48:15 +00:00
|
|
|
noise = randn(size(data))
|
|
|
|
timesteps = rand(2:num_timesteps, size(data)[2]) # TODO: fix start at timestep=2, bruh
|
|
|
|
noisy_data = Diffusers.add_noise(scheduler, data, noise, timesteps)
|
2023-07-05 19:13:26 +00:00
|
|
|
grads = Flux.gradient(model) do m
|
2023-07-23 12:48:15 +00:00
|
|
|
model_output = m(noisy_data, timesteps)
|
2023-07-25 19:01:56 +00:00
|
|
|
noise_prediction, _ = Diffusers.step(scheduler, noisy_data, model_output, timesteps)
|
2023-07-05 19:13:26 +00:00
|
|
|
loss(noise, noise_prediction)
|
|
|
|
end
|
|
|
|
Flux.update!(opt, params, grads)
|
|
|
|
end
|
2023-07-23 12:48:15 +00:00
|
|
|
ProgressMeter.next!(progress)
|
|
|
|
end
|
|
|
|
|
|
|
|
# sampling animation
|
|
|
|
anim = @animate for timestep in num_timesteps:-1:2
|
|
|
|
model_output = model(data, [timestep])
|
2023-07-25 19:01:56 +00:00
|
|
|
sampled_data, x0_pred = Diffusers.step(scheduler, data, model_output, [timestep])
|
|
|
|
|
|
|
|
p1 = scatter(sampled_data[1, :], sampled_data[2, :],
|
|
|
|
alpha=0.5,
|
|
|
|
aspectratio=:equal,
|
|
|
|
label="sampled data",
|
|
|
|
legend=false,
|
|
|
|
)
|
|
|
|
scatter!(data[1, :], data[2, :],
|
|
|
|
alpha=0.5,
|
|
|
|
aspectratio=:equal,
|
|
|
|
label="data",
|
|
|
|
)
|
|
|
|
|
|
|
|
p2 = scatter(x0_pred[1, :], x0_pred[2, :],
|
2023-07-23 12:48:15 +00:00
|
|
|
alpha=0.5,
|
|
|
|
aspectratio=:equal,
|
|
|
|
label="sampled data",
|
2023-07-25 19:01:56 +00:00
|
|
|
legend=false,
|
2023-07-23 12:48:15 +00:00
|
|
|
)
|
|
|
|
scatter!(data[1, :], data[2, :],
|
|
|
|
alpha=0.5,
|
|
|
|
aspectratio=:equal,
|
|
|
|
label="data",
|
|
|
|
)
|
2023-07-25 19:01:56 +00:00
|
|
|
|
|
|
|
l = @layout [a b]
|
2023-07-23 12:48:15 +00:00
|
|
|
i_str = lpad(timestep, 3, "0")
|
2023-07-25 19:01:56 +00:00
|
|
|
plot(p1, p2,
|
|
|
|
layout=l,
|
|
|
|
plot_title="t = $(i_str)",
|
|
|
|
)
|
|
|
|
xlims!(-2, 2)
|
|
|
|
ylims!(-2, 2)
|
2023-07-05 19:13:26 +00:00
|
|
|
end
|
|
|
|
|
2023-07-23 12:48:15 +00:00
|
|
|
gif(anim, "sampling.gif", fps=30)
|