mirror of
https://github.com/Laurent2916/Diffusers.jl.git
synced 2024-11-08 14:38:58 +00:00
93 lines
2.9 KiB
Julia
93 lines
2.9 KiB
Julia
import Diffusers: reverse, forward, get_velocity, DDPM, cosine_beta_schedule, VELOCITY, EPSILON, SAMPLE
|
|
import Statistics: mean, std
|
|
using Test
|
|
|
|
@testset "Schedulers tests" begin
|
|
|
|
@testset "check `reverse` correctness" begin
|
|
T = 10
|
|
batch_size = 8
|
|
data_size = 128
|
|
|
|
# create a DDPM with a cosine beta schedule
|
|
for scheduler_type in [DDPM, DDIM]
|
|
|
|
scheduler = scheduler_type(cosine_beta_schedule(T))
|
|
@testset "Scheduler == $scheduler_type" begin
|
|
|
|
# create some dummy data
|
|
x₀ = ones(Float32, data_size, data_size, batch_size)
|
|
ϵ = randn(Float32, data_size, data_size, batch_size)
|
|
|
|
@testset "PredictionType == EPSILON" begin
|
|
for t in 1:T
|
|
t = ones(UInt32, batch_size) .* t
|
|
# get xₜ from forward diffusion process
|
|
xₜ = forward(scheduler, x₀, ϵ, t)
|
|
# suppose a model predicted ϵ perfectly
|
|
ϵᵧ = ϵ
|
|
# use reverse diffusion process to retreive x̂₀
|
|
_, x̂₀ = reverse(scheduler, xₜ, ϵᵧ, t; prediction_type=EPSILON)
|
|
# test that we recover x₀
|
|
@test x̂₀ ≈ x₀
|
|
end
|
|
end
|
|
|
|
@testset "PredictionType == SAMPLE" begin
|
|
for t in 1:T
|
|
t = ones(UInt32, batch_size) .* t
|
|
# get xₜ from forward diffusion process
|
|
xₜ = forward(scheduler, x₀, ϵ, t)
|
|
# suppose a model predicted x₀ perfectly
|
|
ϵᵧ = x₀
|
|
# use reverse diffusion process to retreive x̂₀
|
|
_, x̂₀ = reverse(scheduler, xₜ, ϵᵧ, t; prediction_type=SAMPLE)
|
|
# test that we recover x₀
|
|
@test x̂₀ ≈ x₀
|
|
end
|
|
end
|
|
|
|
@testset "PredictionType == VELOCITY" begin
|
|
for t in 1:T
|
|
t = ones(UInt32, batch_size) .* t
|
|
# get xₜ from forward diffusion process
|
|
xₜ = forward(scheduler, x₀, ϵ, t)
|
|
# compute vₜ to train model
|
|
vₜ = get_velocity(scheduler, x₀, ϵ, t)
|
|
# suppose a model predicted vₜ perfectly
|
|
vᵧ = vₜ
|
|
# use reverse diffusion process to retreive x̂₀
|
|
_, x̂₀ = Diffusers.reverse(scheduler, xₜ, vₜ, t; prediction_type=VELOCITY)
|
|
# test that we recover x₀
|
|
@test x̂₀ ≈ x₀
|
|
end
|
|
end
|
|
|
|
end
|
|
|
|
end
|
|
|
|
end
|
|
|
|
@testset "check `forward` terminal SNR" begin
|
|
T = 10
|
|
batch_size = 1
|
|
size = 2500
|
|
|
|
# create a DDPM with a terminal SNR cosine beta schedule
|
|
ddpm = DDPM(cosine_beta_schedule(T))
|
|
|
|
# create some dummy data
|
|
x₀ = ones(Float32, size, size, batch_size)
|
|
ϵ = randn(Float32, size, size, batch_size)
|
|
|
|
t = ones(UInt32, batch_size) .* T
|
|
# corrupt x₀ with noise
|
|
xₜ = forward(ddpm, x₀, ϵ, t)
|
|
|
|
@test std(xₜ) ≈ 1.0 atol = 1.0f-3
|
|
@test mean(xₜ) ≈ 0.0 atol = 1.0f-2
|
|
end
|
|
|
|
end
|