Diffusers.jl/dev/search_index.js
2023-08-06 19:22:59 +00:00

4 lines
7.4 KiB
JavaScript
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

var documenterSearchIndex = {"docs":
[{"location":"schedulers/","page":"Schedulers","title":"Schedulers","text":"Modules = [Diffusers.Schedulers]","category":"page"},{"location":"schedulers/#Diffusers.Schedulers.DDPM","page":"Schedulers","title":"Diffusers.Schedulers.DDPM","text":"Denoising Diffusion Probabilistic Models (DDPM) scheduler.\n\nReferences\n\n[2006.11239] Denoising Diffusion Probabilistic Models\n\n\n\n\n\n","category":"type"},{"location":"schedulers/#Diffusers.Schedulers.Scheduler","page":"Schedulers","title":"Diffusers.Schedulers.Scheduler","text":"Abstract type for schedulers.\n\n\n\n\n\n","category":"type"},{"location":"schedulers/#Diffusers.Schedulers.add_noise-Tuple{Diffusers.Schedulers.Scheduler, AbstractArray, AbstractArray, AbstractArray}","page":"Schedulers","title":"Diffusers.Schedulers.add_noise","text":"Add noise to clean data using the forward diffusion process.\n\nInput\n\nscheduler::Scheduler: scheduler to use\nx₀::AbstractArray: clean data to add noise to\nϵ::AbstractArray: noise to add to clean data\nt::AbstractArray: timesteps used to weight the noise\n\nOutput\n\nxₜ::AbstractArray: noisy data at the given timesteps\n\n\n\n\n\n","category":"method"},{"location":"schedulers/#Diffusers.Schedulers.step-Tuple{Diffusers.Schedulers.Scheduler, AbstractArray, AbstractArray, AbstractArray}","page":"Schedulers","title":"Diffusers.Schedulers.step","text":"Remove noise from model output using the backward diffusion process.\n\nInput\n\nscheduler::Scheduler: scheduler to use\nxₜ::AbstractArray: sample to be denoised\nϵᵧ::AbstractArray: predicted noise to remove\nt::AbstractArray: timestep t of xₜ\n\nOutput\n\nxₜ₋₁::AbstractArray: denoised sample at t=t-1\nx̂₀::AbstractArray: denoised sample at t=0\n\n\n\n\n\n","category":"method"},{"location":"beta_schedules/","page":"Beta Schedules","title":"Beta Schedules","text":"using Diffusers.BetaSchedules\nusing LaTeXStrings\nusing PlotlyJS\n\nT = 1000\n\nβ_linear = linear_beta_schedule(T)\nβ_scaled_linear = scaled_linear_beta_schedule(T)\nβ_cosine = cosine_beta_schedule(T)\nβ_sigmoid = sigmoid_beta_schedule(T)\n\nα̅_linear = cumprod(1 .- β_linear)\nα̅_scaled_linear = cumprod(1 .- β_scaled_linear)\nα̅_cosine = cumprod(1 .- β_cosine)\nα̅_sigmoid = cumprod(1 .- β_sigmoid)\n\np1 = plot(\n [\n scatter(y=β_linear, name=\"Linear\"),\n scatter(y=β_scaled_linear, name=\"Scaled linear\", visible=\"legendonly\"),\n scatter(y=β_cosine, name=\"Cosine\"),\n scatter(y=β_sigmoid, name=\"Sigmoid\", visible=\"legendonly\"),\n ],\n Layout(\n updatemenus=[\n attr(\n type=\"buttons\",\n active=1,\n buttons=[\n attr(\n label=\"Linear\",\n method=\"relayout\",\n args=[\"yaxis.type\", \"linear\"],\n ),\n attr(\n label=\"Log\",\n method=\"relayout\",\n args=[\"yaxis.type\", \"log\"],\n ),\n ]\n ),\n ],\n xaxis=attr(\n title=L\"t\",\n ),\n yaxis=attr(\n type=\"log\",\n title=L\"\\beta\",\n )\n )\n)\n\np2 = plot(\n [\n scatter(y=α̅_linear, name=\"Linear\"),\n scatter(y=α̅_scaled_linear, name=\"Scaled linear\", visible=\"legendonly\"),\n scatter(y=α̅_cosine, name=\"Cosine\"),\n scatter(y=α̅_sigmoid, name=\"Sigmoid\", visible=\"legendonly\"),\n ],\n Layout(\n updatemenus=[\n attr(\n type=\"buttons\",\n buttons=[\n attr(\n label=\"Linear\",\n method=\"relayout\",\n args=[\"yaxis.type\", \"linear\"],\n ),\n attr(\n label=\"Log\",\n method=\"relayout\",\n args=[\"yaxis.type\", \"log\"],\n ),\n ],\n ),\n ],\n xaxis=attr(\n title=L\"t\",\n ),\n yaxis=attr(\n title=L\"\\overline\\alpha\",\n )\n )\n)\n\nmkpath(\"beta_schedules\")\nsavefig(p1, \"beta_schedules/beta_schedules.html\")\nsavefig(p2, \"beta_schedules/alpha_bar_schedules.html\")\nnothing","category":"page"},{"location":"beta_schedules/","page":"Beta Schedules","title":"Beta Schedules","text":"<object type=\"text/html\" data=\"beta_schedules.html\" style=\"width:100%;height:420px;\"></object>\n<object type=\"text/html\" data=\"alpha_bar_schedules.html\" style=\"width:100%;height:420px;\"></object>","category":"page"},{"location":"beta_schedules/","page":"Beta Schedules","title":"Beta Schedules","text":"Modules = [Diffusers.BetaSchedules]","category":"page"},{"location":"beta_schedules/#Diffusers.BetaSchedules.cosine_beta_schedule","page":"Beta Schedules","title":"Diffusers.BetaSchedules.cosine_beta_schedule","text":"Cosine beta schedule.\n\nInput\n\nT::Int: number of timesteps\nβₘₐₓ::Real=0.999f0: maximum value of β\nϵ::Real=1.0f-3: small value used to avoid division by zero\n\nOutput\n\nβ::Vector{Real}: βₜ values at each timestep t\n\nReferences\n\n[2102.09672] Improved Denoising Diffusion Probabilistic Models\ngithub:openai/improved-diffusion\n\n\n\n\n\n","category":"function"},{"location":"beta_schedules/#Diffusers.BetaSchedules.linear_beta_schedule","page":"Beta Schedules","title":"Diffusers.BetaSchedules.linear_beta_schedule","text":"Linear beta schedule.\n\nInput\n\nT::Integer: number of timesteps\nβ₁::Real=1.0f-4: initial (t=1) value of β\nβ₋₁::Real=2.0f-2: final (t=T) value of β\n\nOutput\n\nβ::Vector{Real}: βₜ values at each timestep t\n\nReferences\n\n[2006.11239] Denoising Diffusion Probabilistic Models\n\n\n\n\n\n","category":"function"},{"location":"beta_schedules/#Diffusers.BetaSchedules.rescale_zero_terminal_snr-Tuple{AbstractArray}","page":"Beta Schedules","title":"Diffusers.BetaSchedules.rescale_zero_terminal_snr","text":"Rescale betas to have zero terminal Signal to Noise Ratio (SNR).\n\nInput\n\nβ::AbstractArray: βₜ values at each timestep t\n\nOutput\n\nβ::Vector{Real}: rescaled βₜ values at each timestep t\n\nReferences\n\n[2305.08891] Rescaling Diffusion Models (Alg. 1)\n\n\n\n\n\n","category":"method"},{"location":"beta_schedules/#Diffusers.BetaSchedules.scaled_linear_beta_schedule","page":"Beta Schedules","title":"Diffusers.BetaSchedules.scaled_linear_beta_schedule","text":"Scaled linear beta schedule.\n\nInput\n\nT::Int: number of timesteps\nβ₁::Real=1.0f-4: initial value of β\nβ₋₁::Real=2.0f-2: final value of β\n\nOutput\n\nβ::Vector{Real}: βₜ values at each timestep t\n\nReferences\n\n[2006.11239] Denoising Diffusion Probabilistic Models\n\n\n\n\n\n","category":"function"},{"location":"beta_schedules/#Diffusers.BetaSchedules.sigmoid_beta_schedule","page":"Beta Schedules","title":"Diffusers.BetaSchedules.sigmoid_beta_schedule","text":"Sigmoid beta schedule.\n\nInput\n\nT::Int: number of timesteps\nβ₁::Real=1.0f-4: initial value of β\nβ₋₁::Real=2.0f-2: final value of β\n\nOutput\n\nβ::Vector{Real}: βₜ values at each timestep t\n\nReferences\n\n[2203.02923] GeoDiff: a Geometric Diffusion Model for Molecular Conformation Generation\ngithub.com:MinkaiXu/GeoDiff\n\n\n\n\n\n","category":"function"},{"location":"","page":"Home","title":"Home","text":"CurrentModule = Diffusers","category":"page"},{"location":"#Diffusers","page":"Home","title":"Diffusers","text":"","category":"section"},{"location":"","page":"Home","title":"Home","text":"Documentation for Diffusers.jl.","category":"page"},{"location":"#Index","page":"Home","title":"Index","text":"","category":"section"},{"location":"","page":"Home","title":"Home","text":"","category":"page"}]
}