mirror of
https://github.com/Laurent2916/REVA-QCAV.git
synced 2024-11-08 14:39:00 +00:00
41 lines
1.6 KiB
Python
41 lines
1.6 KiB
Python
|
import torch
|
||
|
from torch import Tensor
|
||
|
|
||
|
|
||
|
def dice_coeff(input: Tensor, target: Tensor, reduce_batch_first: bool = False, epsilon=1e-6):
|
||
|
# Average of Dice coefficient for all batches, or for a single mask
|
||
|
assert input.size() == target.size()
|
||
|
if input.dim() == 2 and reduce_batch_first:
|
||
|
raise ValueError(f'Dice: asked to reduce batch but got tensor without batch dimension (shape {input.shape})')
|
||
|
|
||
|
if input.dim() == 2 or reduce_batch_first:
|
||
|
inter = torch.dot(input.view(-1), target.view(-1))
|
||
|
sets_sum = torch.sum(input) + torch.sum(target)
|
||
|
if sets_sum.item() == 0:
|
||
|
sets_sum = 2 * inter
|
||
|
|
||
|
return (2 * inter + epsilon) / (sets_sum + epsilon)
|
||
|
else:
|
||
|
# compute and average metric for each batch element
|
||
|
dice = 0
|
||
|
for i in range(input.shape[0]):
|
||
|
dice += dice_coeff(input[i, ...], target[i, ...])
|
||
|
return dice / input.shape[0]
|
||
|
|
||
|
|
||
|
def multiclass_dice_coeff(input: Tensor, target: Tensor, reduce_batch_first: bool = False, epsilon=1e-6):
|
||
|
# Average of Dice coefficient for all classes
|
||
|
assert input.size() == target.size()
|
||
|
dice = 0
|
||
|
for channel in range(input.shape[1]):
|
||
|
dice += dice_coeff(input[:, channel, ...], target[:, channel, ...], reduce_batch_first, epsilon)
|
||
|
|
||
|
return dice / input.shape[1]
|
||
|
|
||
|
|
||
|
def dice_loss(input: Tensor, target: Tensor, multiclass: bool = False):
|
||
|
# Dice loss (objective to minimize) between 0 and 1
|
||
|
assert input.size() == target.size()
|
||
|
fn = multiclass_dice_coeff if multiclass else dice_coeff
|
||
|
return 1 - fn(input, target, reduce_batch_first=True)
|