REVA-QCAV/src/utils/dataset.py

91 lines
2.9 KiB
Python
Raw Normal View History

import logging
from os import listdir
from os.path import splitext
from pathlib import Path
import numpy as np
import torch
from PIL import Image
from torch.utils.data import Dataset
class SphereDataset(Dataset):
def __init__(self, images_dir: str, masks_dir: str, scale: float = 1.0, mask_suffix: str = ""):
self.images_dir = Path(images_dir)
self.masks_dir = Path(masks_dir)
assert 0 < scale <= 1, "Scale must be between 0 and 1"
self.scale = scale
self.mask_suffix = mask_suffix
self.ids = [splitext(file)[0] for file in listdir(images_dir) if not file.startswith(".")]
if not self.ids:
raise RuntimeError(f"No input file found in {images_dir}, make sure you put your images there")
logging.info(f"Creating dataset with {len(self.ids)} examples")
def __len__(self):
return len(self.ids)
@staticmethod
def preprocess(pil_img, scale, is_mask):
w, h = pil_img.size
newW, newH = int(scale * w), int(scale * h)
assert (
newW > 0 and newH > 0,
"Scale is too small, resized images would have no pixel",
)
pil_img = pil_img.resize((newW, newH), resample=Image.NEAREST if is_mask else Image.BICUBIC)
img_ndarray = np.asarray(pil_img)
if not is_mask:
if img_ndarray.ndim == 2:
img_ndarray = img_ndarray[np.newaxis, ...]
else:
img_ndarray = img_ndarray.transpose((2, 0, 1))
img_ndarray = img_ndarray / 255
return img_ndarray
@staticmethod
def load(filename):
ext = splitext(filename)[1]
if ext in [".npz", ".npy"]:
return Image.fromarray(np.load(filename))
elif ext in [".pt", ".pth"]:
return Image.fromarray(torch.load(filename).numpy())
else:
return Image.open(filename)
def __getitem__(self, idx):
name = self.ids[idx]
mask_file = list(self.masks_dir.glob(name + self.mask_suffix + ".*"))
img_file = list(self.images_dir.glob(name + ".*"))
assert (
len(img_file) == 1,
f"Either no image or multiple images found for the ID {name}: {img_file}",
)
assert (
len(mask_file) == 1,
f"Either no mask or multiple masks found for the ID {name}: {mask_file}",
)
mask = self.load(mask_file[0])
img = self.load(img_file[0])
assert (
img.size == mask.size,
f"Image and mask {name} should be the same size, but are {img.size} and {mask.size}",
)
img = self.preprocess(img, self.scale, is_mask=False)
mask = self.preprocess(mask, self.scale, is_mask=True)
return {
"image": torch.as_tensor(img.copy()).float().contiguous(),
"mask": torch.as_tensor(mask.copy()).long().contiguous(),
}