diff --git a/README.md b/README.md index d8b8e0b..12e6252 100644 --- a/README.md +++ b/README.md @@ -1,5 +1,8 @@ # UNet: semantic segmentation with PyTorch +[![xscode](https://img.shields.io/badge/Available%20on-xs%3Acode-blue?style=?style=plastic&logo=appveyor&logo=)](https://xscode.com/milesial/Pytorch-UNet) + + ![input and output for a random image in the test dataset](https://framapic.org/OcE8HlU6me61/KNTt8GFQzxDR.png) @@ -92,6 +95,11 @@ Predicting images of 1918*1280 takes 1.5GB of memory. Training takes much approximately 3GB, so if you are a few MB shy of memory, consider turning off all graphical displays. This assumes you use bilinear up-sampling, and not transposed convolution in the model. +## Support + +Personalized support for issues with this repository, or integrating with your own dataset, available on [xs:code](https://xscode.com/milesial/Pytorch-UNet). + + --- Original paper by Olaf Ronneberger, Philipp Fischer, Thomas Brox: [https://arxiv.org/abs/1505.04597](https://arxiv.org/abs/1505.04597)