mirror of
https://github.com/Laurent2916/REVA-QCAV.git
synced 2024-11-08 14:39:00 +00:00
feat: new paste dataset
Former-commit-id: 039874208d5a27bf01beb2746a77502fd836ae5c [formerly 66638fcabaea1044d9a2fd48e6ffb20f149ebf47] Former-commit-id: 6bdf8bba0b3cbd8706337aa3167c36fba8855a4c
This commit is contained in:
parent
b71b57285f
commit
0dd606144f
|
@ -1 +1 @@
|
|||
9cbd3cff7e664a80a5a1fa1404898b7bba3cae0d
|
||||
3c9a34f197340a6051eb34d11695c7d6b72164f0
|
177
extract.ipynb
Normal file
177
extract.ipynb
Normal file
File diff suppressed because one or more lines are too long
14
src/train.py
14
src/train.py
|
@ -15,16 +15,22 @@ CONFIG = {
|
|||
"DIR_TEST_IMG": "/home/lilian/data_disk/lfainsin/test/",
|
||||
"DIR_SPHERE_IMG": "/home/lilian/data_disk/lfainsin/spheres/Images/",
|
||||
"DIR_SPHERE_MASK": "/home/lilian/data_disk/lfainsin/spheres/Masks/",
|
||||
"FEATURES": [16, 32, 64, 128],
|
||||
# "FEATURES": [1, 2, 4, 8],
|
||||
# "FEATURES": [4, 8, 16, 32],
|
||||
# "FEATURES": [8, 16, 32, 64],
|
||||
# "FEATURES": [4, 8, 16, 32, 64],
|
||||
"FEATURES": [8, 16, 32, 64, 128],
|
||||
# "FEATURES": [16, 32, 64, 128],
|
||||
# "FEATURES": [64, 128, 256, 512],
|
||||
"N_CHANNELS": 3,
|
||||
"N_CLASSES": 1,
|
||||
"AMP": True,
|
||||
"PIN_MEMORY": True,
|
||||
"BENCHMARK": True,
|
||||
"DEVICE": "gpu",
|
||||
"WORKERS": 8,
|
||||
"EPOCHS": 10,
|
||||
"BATCH_SIZE": 16,
|
||||
"WORKERS": 10,
|
||||
"EPOCHS": 1,
|
||||
"BATCH_SIZE": 32,
|
||||
"LEARNING_RATE": 1e-4,
|
||||
"WEIGHT_DECAY": 1e-8,
|
||||
"MOMENTUM": 0.9,
|
||||
|
|
|
@ -82,7 +82,7 @@ class UNet(pl.LightningModule):
|
|||
)
|
||||
|
||||
ds_train = SphereDataset(image_dir=wandb.config.DIR_TRAIN_IMG, transform=tf_train)
|
||||
ds_train = torch.utils.data.Subset(ds_train, list(range(0, len(ds_train), len(ds_train) // 5000)))
|
||||
# ds_train = torch.utils.data.Subset(ds_train, list(range(0, len(ds_train), len(ds_train) // 10000)))
|
||||
|
||||
return DataLoader(
|
||||
ds_train,
|
||||
|
@ -178,6 +178,8 @@ class UNet(pl.LightningModule):
|
|||
},
|
||||
},
|
||||
),
|
||||
dice,
|
||||
dice_bin,
|
||||
]
|
||||
)
|
||||
|
||||
|
@ -199,7 +201,7 @@ class UNet(pl.LightningModule):
|
|||
mae = torch.stack([d["mae"] for d in validation_outputs]).mean()
|
||||
|
||||
# table unpacking
|
||||
columns = ["ID", "image", "ground truth", "prediction"]
|
||||
columns = ["ID", "image", "ground truth", "prediction", "dice", "dice_bin"]
|
||||
rowss = [d["table_rows"] for d in validation_outputs]
|
||||
rows = list(itertools.chain.from_iterable(rowss))
|
||||
|
||||
|
|
|
@ -1,5 +1,6 @@
|
|||
import os
|
||||
import random as rd
|
||||
from pathlib import Path
|
||||
|
||||
import albumentations as A
|
||||
import numpy as np
|
||||
|
@ -22,15 +23,15 @@ class RandomPaste(A.DualTransform):
|
|||
def __init__(
|
||||
self,
|
||||
nb,
|
||||
path_paste_img_dir,
|
||||
path_paste_mask_dir,
|
||||
image_dir,
|
||||
scale_range=(0.1, 0.2),
|
||||
always_apply=True,
|
||||
p=1.0,
|
||||
):
|
||||
super().__init__(always_apply, p)
|
||||
self.path_paste_img_dir = path_paste_img_dir
|
||||
self.path_paste_mask_dir = path_paste_mask_dir
|
||||
self.images = []
|
||||
self.images.extend(list(Path(image_dir).glob("**/*.jpg")))
|
||||
self.images.extend(list(Path(image_dir).glob("**/*.png")))
|
||||
self.scale_range = scale_range
|
||||
self.nb = nb
|
||||
|
||||
|
@ -69,14 +70,15 @@ class RandomPaste(A.DualTransform):
|
|||
return False
|
||||
|
||||
def get_params_dependent_on_targets(self, params):
|
||||
# choose a random image inside the image folder
|
||||
filename = rd.choice(os.listdir(self.path_paste_img_dir))
|
||||
# choose a random image and its corresponding mask
|
||||
img_path = rd.choice(self.images)
|
||||
mask_path = img_path.parent.joinpath("MASK.PNG")
|
||||
|
||||
# load the "paste" image
|
||||
paste_img = Image.open(
|
||||
os.path.join(
|
||||
self.path_paste_img_dir,
|
||||
filename,
|
||||
img_path,
|
||||
)
|
||||
).convert("RGBA")
|
||||
|
||||
|
@ -84,25 +86,23 @@ class RandomPaste(A.DualTransform):
|
|||
paste_mask = Image.open(
|
||||
os.path.join(
|
||||
self.path_paste_mask_dir,
|
||||
filename,
|
||||
mask_path,
|
||||
)
|
||||
).convert("LA")
|
||||
|
||||
# load the target image
|
||||
target_img = params["image"]
|
||||
|
||||
# compute shapes, for easier computations
|
||||
target_shape = np.array(target_img.shape[:2], dtype=np.uint)
|
||||
paste_shape = np.array(paste_img.size, dtype=np.uint)
|
||||
|
||||
# change paste_img's brightness randomly
|
||||
filter = ImageEnhance.Brightness(paste_img)
|
||||
paste_img = filter.enhance(rd.uniform(0.5, 1.5))
|
||||
|
||||
# change paste_img's contrast randomly
|
||||
filter = ImageEnhance.Contrast(paste_img)
|
||||
paste_img = filter.enhance(rd.uniform(0.5, 1.5))
|
||||
|
||||
# change paste_img's sharpness randomly
|
||||
filter = ImageEnhance.Sharpness(paste_img)
|
||||
# change paste_img's brightness randomly
|
||||
filter = ImageEnhance.Brightness(paste_img)
|
||||
paste_img = filter.enhance(rd.uniform(0.5, 1.5))
|
||||
|
||||
# compute the minimum scaling to fit inside target image
|
||||
|
|
Loading…
Reference in a new issue