mirror of
https://github.com/Laurent2916/REVA-QCAV.git
synced 2024-11-09 23:12:05 +00:00
feat: validate every 100 steps
Former-commit-id: a3367de4ed56c5a708d66e7cd6be27d52bb92ccc [formerly 4606a91526eae57d56fc93df7ed34b867495e1c5] Former-commit-id: 6584449cd25b18ddd46f6804c8b1653e1c72dda0
This commit is contained in:
parent
cf8f52735a
commit
2571e5c6d3
19
src/train.py
19
src/train.py
|
@ -137,7 +137,7 @@ if __name__ == "__main__":
|
||||||
wandb.run.log_artifact(artifact)
|
wandb.run.log_artifact(artifact)
|
||||||
|
|
||||||
# log gradients and weights four time per epoch
|
# log gradients and weights four time per epoch
|
||||||
wandb.watch(net, log_freq=(len(train_loader) + len(val_loader)) // 4)
|
wandb.watch(net, criterion, log_freq=100)
|
||||||
|
|
||||||
# print the config
|
# print the config
|
||||||
logging.info(f"wandb config:\n{yaml.dump(wandb.config.as_dict())}")
|
logging.info(f"wandb config:\n{yaml.dump(wandb.config.as_dict())}")
|
||||||
|
@ -198,13 +198,14 @@ if __name__ == "__main__":
|
||||||
}
|
}
|
||||||
)
|
)
|
||||||
|
|
||||||
|
if step and (step % 100 == 0 or step == len(train_loader)):
|
||||||
# Evaluation round
|
# Evaluation round
|
||||||
net.eval()
|
net.eval()
|
||||||
accuracy = 0
|
accuracy = 0
|
||||||
val_loss = 0
|
val_loss = 0
|
||||||
dice = 0
|
dice = 0
|
||||||
mae = 0
|
mae = 0
|
||||||
with tqdm(val_loader, total=len(ds_valid), desc="val", unit="img", leave=False) as pbar:
|
with tqdm(val_loader, total=len(ds_valid), desc="val", unit="img", leave=False) as pbar2:
|
||||||
for images, masks_true in val_loader:
|
for images, masks_true in val_loader:
|
||||||
|
|
||||||
# transfer images to device
|
# transfer images to device
|
||||||
|
@ -223,7 +224,7 @@ if __name__ == "__main__":
|
||||||
dice += dice_coeff(masks_pred_bin, masks_true)
|
dice += dice_coeff(masks_pred_bin, masks_true)
|
||||||
|
|
||||||
# update progress bar
|
# update progress bar
|
||||||
pbar.update(images.shape[0])
|
pbar2.update(images.shape[0])
|
||||||
|
|
||||||
accuracy /= len(val_loader)
|
accuracy /= len(val_loader)
|
||||||
val_loss /= len(val_loader)
|
val_loss /= len(val_loader)
|
||||||
|
@ -272,17 +273,11 @@ if __name__ == "__main__":
|
||||||
net.train()
|
net.train()
|
||||||
scheduler.step(dice)
|
scheduler.step(dice)
|
||||||
|
|
||||||
# save weights when epoch end
|
# export model to onnx format when validation ends
|
||||||
torch.save(net.state_dict(), f"checkpoints/model-{epoch}.pth")
|
|
||||||
artifact = wandb.Artifact("pth", type="model")
|
|
||||||
artifact.add_file(f"checkpoints/model-{epoch}.pth")
|
|
||||||
wandb.run.log_artifact(artifact)
|
|
||||||
|
|
||||||
# export model to onnx format
|
|
||||||
dummy_input = torch.randn(1, 3, 512, 512, requires_grad=True).to(device)
|
dummy_input = torch.randn(1, 3, 512, 512, requires_grad=True).to(device)
|
||||||
torch.onnx.export(net, dummy_input, f"checkpoints/model-{epoch}.onnx")
|
torch.onnx.export(net, dummy_input, f"checkpoints/model-{epoch}-{step}.onnx")
|
||||||
artifact = wandb.Artifact("onnx", type="model")
|
artifact = wandb.Artifact("onnx", type="model")
|
||||||
artifact.add_file(f"checkpoints/model-{epoch}.onnx")
|
artifact.add_file(f"checkpoints/model-{epoch}-{step}.onnx")
|
||||||
wandb.run.log_artifact(artifact)
|
wandb.run.log_artifact(artifact)
|
||||||
|
|
||||||
# stop wandb
|
# stop wandb
|
||||||
|
|
Loading…
Reference in a new issue