mirror of
https://github.com/Laurent2916/REVA-QCAV.git
synced 2024-11-09 15:02:03 +00:00
Fix torchhub
Former-commit-id: 9a6ee84c50390306e24bb369d1c24d2fdd9d7e60
This commit is contained in:
parent
f55693b6a4
commit
2ca43802cc
|
@ -155,16 +155,16 @@ You can specify which model file to use with `--model MODEL.pth`.
|
|||
The training progress can be visualized in real-time using [Weights & Biases](https://wandb.ai/). Loss curves, validation curves, weights and gradient histograms, as well as predicted masks are logged to the platform.
|
||||
|
||||
When launching a training, a link will be printed in the console. Click on it to go to your dashboard. If you have an existing W&B account, you can link it
|
||||
by setting the `WANDB_API_KEY` environment variable.
|
||||
by setting the `WANDB_API_KEY` environment variable. If not, it will create an anonymous run which is automatically deleted after 7 days.
|
||||
|
||||
|
||||
## Pretrained model
|
||||
A [pretrained model](https://github.com/milesial/Pytorch-UNet/releases/tag/v2.0) is available for the Carvana dataset. It can also be loaded from torch.hub:
|
||||
A [pretrained model](https://github.com/milesial/Pytorch-UNet/releases/tag/v3.0) is available for the Carvana dataset. It can also be loaded from torch.hub:
|
||||
|
||||
```python
|
||||
net = torch.hub.load('milesial/Pytorch-UNet', 'unet_carvana', pretrained=True)
|
||||
net = torch.hub.load('milesial/Pytorch-UNet', 'unet_carvana', pretrained=True, scale=0.5)
|
||||
```
|
||||
The training was done with a 50% scale and bilinear upsampling.
|
||||
Available scales are 0.5 and 1.0.
|
||||
|
||||
## Data
|
||||
The Carvana data is available on the [Kaggle website](https://www.kaggle.com/c/carvana-image-masking-challenge/data).
|
||||
|
|
12
hubconf.py
12
hubconf.py
|
@ -1,14 +1,20 @@
|
|||
import torch
|
||||
from unet import UNet as _UNet
|
||||
|
||||
def unet_carvana(pretrained=False):
|
||||
def unet_carvana(pretrained=False, scale=0.5):
|
||||
"""
|
||||
UNet model trained on the Carvana dataset ( https://www.kaggle.com/c/carvana-image-masking-challenge/data ).
|
||||
Set the scale to 0.5 (50%) when predicting.
|
||||
"""
|
||||
net = _UNet(n_channels=3, n_classes=2, bilinear=True)
|
||||
net = _UNet(n_channels=3, n_classes=2, bilinear=False)
|
||||
if pretrained:
|
||||
checkpoint = 'https://github.com/milesial/Pytorch-UNet/releases/download/v2.0/unet_carvana_scale0.5_epoch1.pth'
|
||||
if scale == 0.5:
|
||||
checkpoint = 'https://github.com/milesial/Pytorch-UNet/releases/download/v3.0/unet_carvana_scale0.5_epoch2.pth'
|
||||
elif scale == 1.0:
|
||||
checkpoint = 'https://github.com/milesial/Pytorch-UNet/releases/download/v3.0/unet_carvana_scale1.0_epoch2.pth'
|
||||
else:
|
||||
raise RuntimeError('Only 0.5 and 1.0 scales are available')
|
||||
|
||||
net.load_state_dict(torch.hub.load_state_dict_from_url(checkpoint, progress=True))
|
||||
|
||||
return net
|
||||
|
|
|
@ -57,6 +57,7 @@ def get_args():
|
|||
help='Minimum probability value to consider a mask pixel white')
|
||||
parser.add_argument('--scale', '-s', type=float, default=0.5,
|
||||
help='Scale factor for the input images')
|
||||
parser.add_argument('--bilinear', action='store_true', default=False, help='Use bilinear upsampling')
|
||||
|
||||
return parser.parse_args()
|
||||
|
||||
|
@ -81,7 +82,7 @@ if __name__ == '__main__':
|
|||
in_files = args.input
|
||||
out_files = get_output_filenames(args)
|
||||
|
||||
net = UNet(n_channels=3, n_classes=2)
|
||||
net = UNet(n_channels=3, n_classes=2, bilinear=args.bilinear)
|
||||
|
||||
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
||||
logging.info(f'Loading model {args.model}')
|
||||
|
|
7
train.py
7
train.py
|
@ -25,7 +25,7 @@ def train_net(net,
|
|||
device,
|
||||
epochs: int = 5,
|
||||
batch_size: int = 1,
|
||||
learning_rate: float = 0.001,
|
||||
learning_rate: float = 1e-5,
|
||||
val_percent: float = 0.1,
|
||||
save_checkpoint: bool = True,
|
||||
img_scale: float = 0.5,
|
||||
|
@ -147,13 +147,14 @@ def get_args():
|
|||
parser = argparse.ArgumentParser(description='Train the UNet on images and target masks')
|
||||
parser.add_argument('--epochs', '-e', metavar='E', type=int, default=5, help='Number of epochs')
|
||||
parser.add_argument('--batch-size', '-b', dest='batch_size', metavar='B', type=int, default=1, help='Batch size')
|
||||
parser.add_argument('--learning-rate', '-l', metavar='LR', type=float, default=0.00001,
|
||||
parser.add_argument('--learning-rate', '-l', metavar='LR', type=float, default=1e-5,
|
||||
help='Learning rate', dest='lr')
|
||||
parser.add_argument('--load', '-f', type=str, default=False, help='Load model from a .pth file')
|
||||
parser.add_argument('--scale', '-s', type=float, default=0.5, help='Downscaling factor of the images')
|
||||
parser.add_argument('--validation', '-v', dest='val', type=float, default=10.0,
|
||||
help='Percent of the data that is used as validation (0-100)')
|
||||
parser.add_argument('--amp', action='store_true', default=False, help='Use mixed precision')
|
||||
parser.add_argument('--bilinear', action='store_true', default=False, help='Use bilinear upsampling')
|
||||
|
||||
return parser.parse_args()
|
||||
|
||||
|
@ -168,7 +169,7 @@ if __name__ == '__main__':
|
|||
# Change here to adapt to your data
|
||||
# n_channels=3 for RGB images
|
||||
# n_classes is the number of probabilities you want to get per pixel
|
||||
net = UNet(n_channels=3, n_classes=2, bilinear=True)
|
||||
net = UNet(n_channels=3, n_classes=2, bilinear=args.bilinear)
|
||||
|
||||
logging.info(f'Network:\n'
|
||||
f'\t{net.n_channels} input channels\n'
|
||||
|
|
|
@ -4,7 +4,7 @@ from .unet_parts import *
|
|||
|
||||
|
||||
class UNet(nn.Module):
|
||||
def __init__(self, n_channels, n_classes, bilinear=True):
|
||||
def __init__(self, n_channels, n_classes, bilinear=False):
|
||||
super(UNet, self).__init__()
|
||||
self.n_channels = n_channels
|
||||
self.n_classes = n_classes
|
||||
|
|
Loading…
Reference in a new issue