mirror of
https://github.com/Laurent2916/REVA-QCAV.git
synced 2024-11-08 14:39:00 +00:00
Merge pull request #141 from whenyd/master
Apply sigmoid before calc dice in eval_net() Former-commit-id: 32ee0fe21170e98f3edb51f8639d8b26d7ce3475
This commit is contained in:
commit
54ba0e5d54
26
eval.py
26
eval.py
|
@ -5,28 +5,28 @@ from tqdm import tqdm
|
|||
from dice_loss import dice_coeff
|
||||
|
||||
|
||||
def eval_net(net, loader, device, n_val):
|
||||
def eval_net(net, loader, device):
|
||||
"""Evaluation without the densecrf with the dice coefficient"""
|
||||
net.eval()
|
||||
mask_type = torch.float32 if net.n_classes == 1 else torch.long
|
||||
n_val = len(loader) # the number of batch
|
||||
tot = 0
|
||||
|
||||
with tqdm(total=n_val, desc='Validation round', unit='img', leave=False) as pbar:
|
||||
with tqdm(total=n_val, desc='Validation round', unit='batch', leave=False) as pbar:
|
||||
for batch in loader:
|
||||
imgs = batch['image']
|
||||
true_masks = batch['mask']
|
||||
|
||||
imgs, true_masks = batch['image'], batch['mask']
|
||||
imgs = imgs.to(device=device, dtype=torch.float32)
|
||||
mask_type = torch.float32 if net.n_classes == 1 else torch.long
|
||||
true_masks = true_masks.to(device=device, dtype=mask_type)
|
||||
|
||||
mask_pred = net(imgs)
|
||||
with torch.no_grad():
|
||||
mask_pred = net(imgs)
|
||||
|
||||
for true_mask, pred in zip(true_masks, mask_pred):
|
||||
if net.n_classes > 1:
|
||||
tot += F.cross_entropy(mask_pred, true_masks).item()
|
||||
else:
|
||||
pred = torch.sigmoid(mask_pred)
|
||||
pred = (pred > 0.5).float()
|
||||
if net.n_classes > 1:
|
||||
tot += F.cross_entropy(pred.unsqueeze(dim=0), true_mask.unsqueeze(dim=0)).item()
|
||||
else:
|
||||
tot += dice_coeff(pred, true_mask.squeeze(dim=1)).item()
|
||||
pbar.update(imgs.shape[0])
|
||||
tot += dice_coeff(pred, true_masks).item()
|
||||
pbar.update()
|
||||
|
||||
return tot / n_val
|
||||
|
|
4
train.py
4
train.py
|
@ -35,7 +35,7 @@ def train_net(net,
|
|||
n_train = len(dataset) - n_val
|
||||
train, val = random_split(dataset, [n_train, n_val])
|
||||
train_loader = DataLoader(train, batch_size=batch_size, shuffle=True, num_workers=8, pin_memory=True)
|
||||
val_loader = DataLoader(val, batch_size=batch_size, shuffle=False, num_workers=8, pin_memory=True)
|
||||
val_loader = DataLoader(val, batch_size=batch_size, shuffle=False, num_workers=8, pin_memory=True, drop_last=True)
|
||||
|
||||
writer = SummaryWriter(comment=f'LR_{lr}_BS_{batch_size}_SCALE_{img_scale}')
|
||||
global_step = 0
|
||||
|
@ -88,7 +88,7 @@ def train_net(net,
|
|||
pbar.update(imgs.shape[0])
|
||||
global_step += 1
|
||||
if global_step % (len(dataset) // (10 * batch_size)) == 0:
|
||||
val_score = eval_net(net, val_loader, device, n_val)
|
||||
val_score = eval_net(net, val_loader, device)
|
||||
if net.n_classes > 1:
|
||||
logging.info('Validation cross entropy: {}'.format(val_score))
|
||||
writer.add_scalar('Loss/test', val_score, global_step)
|
||||
|
|
Loading…
Reference in a new issue