mirror of
https://github.com/Laurent2916/REVA-QCAV.git
synced 2024-11-08 14:39:00 +00:00
Merge pull request #37 from rht/master
Move the sigmoid activation to the model itself Former-commit-id: 7dd7c8b6346033ed1b15a2c1ab54847016a826db
This commit is contained in:
commit
5da5e17c08
2
eval.py
2
eval.py
|
@ -20,7 +20,7 @@ def eval_net(net, dataset, gpu=False):
|
|||
true_mask = true_mask.cuda()
|
||||
|
||||
mask_pred = net(img)[0]
|
||||
mask_pred = (F.sigmoid(mask_pred) > 0.5).float()
|
||||
mask_pred = (mask_pred > 0.5).float()
|
||||
|
||||
tot += dice_coeff(mask_pred, true_mask).item()
|
||||
return tot / i
|
||||
|
|
|
@ -43,8 +43,8 @@ def predict_img(net,
|
|||
output_left = net(X_left)
|
||||
output_right = net(X_right)
|
||||
|
||||
left_probs = F.sigmoid(output_left).squeeze(0)
|
||||
right_probs = F.sigmoid(output_right).squeeze(0)
|
||||
left_probs = output_left.squeeze(0)
|
||||
right_probs = output_right.squeeze(0)
|
||||
|
||||
tf = transforms.Compose(
|
||||
[
|
||||
|
|
4
train.py
4
train.py
|
@ -6,7 +6,6 @@ import numpy as np
|
|||
import torch
|
||||
import torch.backends.cudnn as cudnn
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from torch import optim
|
||||
|
||||
from eval import eval_net
|
||||
|
@ -74,8 +73,7 @@ def train_net(net,
|
|||
true_masks = true_masks.cuda()
|
||||
|
||||
masks_pred = net(imgs)
|
||||
masks_probs = F.sigmoid(masks_pred)
|
||||
masks_probs_flat = masks_probs.view(-1)
|
||||
masks_probs_flat = masks_pred.view(-1)
|
||||
|
||||
true_masks_flat = true_masks.view(-1)
|
||||
|
||||
|
|
|
@ -1,5 +1,7 @@
|
|||
# full assembly of the sub-parts to form the complete net
|
||||
|
||||
import torch.nn.functional as F
|
||||
|
||||
from .unet_parts import *
|
||||
|
||||
class UNet(nn.Module):
|
||||
|
@ -27,4 +29,4 @@ class UNet(nn.Module):
|
|||
x = self.up3(x, x2)
|
||||
x = self.up4(x, x1)
|
||||
x = self.outc(x)
|
||||
return x
|
||||
return F.sigmoid(x)
|
||||
|
|
Loading…
Reference in a new issue