mirror of
https://github.com/Laurent2916/REVA-QCAV.git
synced 2024-11-09 15:02:03 +00:00
Added CLI for predict, cleaned up code, updated README
Former-commit-id: 77555ccc0925a8fba796ce7e42843d95b6e9dce0
This commit is contained in:
parent
e1bf150da3
commit
7ea54febec
3
.gitignore
vendored
3
.gitignore
vendored
|
@ -3,4 +3,5 @@ data/
|
|||
__pycache__/
|
||||
checkpoints/
|
||||
*.pth
|
||||
|
||||
*.jpg
|
||||
SUBMISSION*
|
||||
|
|
14
README.md
14
README.md
|
@ -5,7 +5,21 @@ This model scored a [dice coefficient](https://en.wikipedia.org/wiki/S%C3%B8rens
|
|||
|
||||
The model used for the last submission is stored in the `MODEL.pth` file, if you wish to play with it. The data is available on the [Kaggle website](https://www.kaggle.com/c/carvana-image-masking-challenge/data).
|
||||
|
||||
## Usage
|
||||
### Prediction
|
||||
|
||||
You can easily test the output masks on your images via the CLI.
|
||||
To see all options:
|
||||
`python predict.py -h`
|
||||
|
||||
To predict a single image and save it:
|
||||
`python predict.py -i image.jpg -o ouput.jpg
|
||||
|
||||
To predict a multiple images and show them without saving them:
|
||||
`python predict.py -i image1.jpg image2.jpg --viz --no-save`
|
||||
|
||||
You can use the cpu-only version with `--cpu`.
|
||||
You can specify which model file to use with `--model MODEL.pth`.
|
||||
|
||||
## Note
|
||||
The code and the overall project architecture is a big mess for now, as I left it abandoned when the challenge finished. I will clean it Soon<sup>TM</sup>.
|
||||
|
|
2
main.py
2
main.py
|
@ -1,5 +1,5 @@
|
|||
#models
|
||||
from unet_model import UNet
|
||||
from unet import UNet
|
||||
from myloss import *
|
||||
import torch
|
||||
from torch.autograd import Variable
|
||||
|
|
83
predict.py
83
predict.py
|
@ -1,12 +1,16 @@
|
|||
import torch
|
||||
from utils import *
|
||||
import torch.nn.functional as F
|
||||
from PIL import Image
|
||||
from unet_model import UNet
|
||||
from torch.autograd import Variable
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy
|
||||
from PIL import Image
|
||||
import argparse
|
||||
import os
|
||||
|
||||
from utils import *
|
||||
from crf import dense_crf
|
||||
|
||||
from unet import UNet
|
||||
|
||||
def predict_img(net, full_img, gpu=False):
|
||||
img = resize_and_crop(full_img)
|
||||
|
@ -39,3 +43,76 @@ def predict_img(net, full_img, gpu=False):
|
|||
yy = dense_crf(np.array(full_img).astype(np.uint8), y)
|
||||
|
||||
return yy > 0.5
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('--model', '-m', default='MODEL.pth',
|
||||
metavar='FILE',
|
||||
help="Specify the file in which is stored the model"
|
||||
" (default : 'MODEL.pth')")
|
||||
parser.add_argument('--input', '-i', metavar='INPUT', nargs='+',
|
||||
help='filenames of input images', required=True)
|
||||
parser.add_argument('--output', '-o', metavar='INPUT', nargs='+',
|
||||
help='filenames of ouput images')
|
||||
parser.add_argument('--cpu', '-c', action='store_true',
|
||||
help="Do not use the cuda version of the net",
|
||||
default=False)
|
||||
parser.add_argument('--viz', '-v', action='store_true',
|
||||
help="Visualize the images as they are processed",
|
||||
default=False)
|
||||
parser.add_argument('--no-save', '-n', action='store_false',
|
||||
help="Do not save the output masks",
|
||||
default=False)
|
||||
|
||||
args = parser.parse_args()
|
||||
print("Using model file : {}".format(args.model))
|
||||
net = UNet(3, 1)
|
||||
if not args.cpu:
|
||||
print("Using CUDA version of the net, prepare your GPU !")
|
||||
net.cuda()
|
||||
else:
|
||||
net.cpu()
|
||||
print("Using CPU version of the net, this may be very slow")
|
||||
|
||||
in_files = args.input
|
||||
out_files = []
|
||||
if not args.output:
|
||||
for f in in_files:
|
||||
pathsplit = os.path.splitext(f)
|
||||
out_files.append("{}_OUT{}".format(pathsplit[0], pathsplit[1]))
|
||||
elif len(in_files) != len(args.output):
|
||||
print("Error : Input files and output files are not of the same length")
|
||||
raise SystemExit()
|
||||
else:
|
||||
out_files = args.output
|
||||
|
||||
print("Loading model ...")
|
||||
net.load_state_dict(torch.load(args.model))
|
||||
print("Model loaded !")
|
||||
|
||||
for i, fn in enumerate(in_files):
|
||||
print("\nPredicting image {} ...".format(fn))
|
||||
img = Image.open(fn)
|
||||
out = predict_img(net, img, not args.cpu)
|
||||
|
||||
if args.viz:
|
||||
print("Vizualising results for image {}, close to continue ..."
|
||||
.format(fn))
|
||||
|
||||
fig = plt.figure()
|
||||
a = fig.add_subplot(1, 2, 1)
|
||||
a.set_title('Input image')
|
||||
plt.imshow(img)
|
||||
|
||||
b = fig.add_subplot(1, 2, 2)
|
||||
b.set_title('Output mask')
|
||||
plt.imshow(out)
|
||||
|
||||
plt.show()
|
||||
|
||||
if not args.no_save:
|
||||
out_fn = out_files[i]
|
||||
result = Image.fromarray((out * 255).astype(numpy.uint8))
|
||||
result.save(out_files[i])
|
||||
print("Mask saved to {}".format(out_files[i]))
|
||||
|
|
|
@ -3,7 +3,7 @@ import os
|
|||
from PIL import Image
|
||||
from predict import *
|
||||
from utils import encode
|
||||
from unet_model import UNet
|
||||
from unet import UNet
|
||||
|
||||
def submit(net, gpu=False):
|
||||
dir = 'data/test/'
|
||||
|
|
3
train.py
3
train.py
|
@ -8,12 +8,13 @@ from data_vis import *
|
|||
from utils import split_train_val, batch
|
||||
from myloss import DiceLoss
|
||||
from eval import eval_net
|
||||
from unet_model import UNet
|
||||
from unet import UNet
|
||||
from torch.autograd import Variable
|
||||
from torch import optim
|
||||
from optparse import OptionParser
|
||||
import sys
|
||||
import os
|
||||
import argparse
|
||||
|
||||
|
||||
def train_net(net, epochs=5, batch_size=2, lr=0.1, val_percent=0.05,
|
||||
|
|
1
unet/__init__.py
Normal file
1
unet/__init__.py
Normal file
|
@ -0,0 +1 @@
|
|||
from .unet_model import UNet
|
|
@ -1,8 +1,12 @@
|
|||
#!/usr/bin/python
|
||||
# full assembly of the sub-parts to form the complete net
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
from unet_parts import *
|
||||
# python 3 confusing imports :(
|
||||
from .unet_parts import *
|
||||
|
||||
|
||||
class UNet(nn.Module):
|
|
@ -1,3 +1,5 @@
|
|||
#!/usr/bin/python
|
||||
|
||||
# sub-parts of the U-Net model
|
||||
|
||||
import torch
|
||||
|
@ -6,6 +8,7 @@ import torch.nn.functional as F
|
|||
|
||||
|
||||
class double_conv(nn.Module):
|
||||
'''(conv => BN => ReLU) * 2'''
|
||||
def __init__(self, in_ch, out_ch):
|
||||
super(double_conv, self).__init__()
|
||||
self.conv = nn.Sequential(
|
||||
|
@ -46,10 +49,16 @@ class down(nn.Module):
|
|||
|
||||
|
||||
class up(nn.Module):
|
||||
def __init__(self, in_ch, out_ch):
|
||||
def __init__(self, in_ch, out_ch, bilinear=True):
|
||||
super(up, self).__init__()
|
||||
|
||||
# would be a nice idea if the upsampling could be learned too,
|
||||
# but my machine do not have enough memory to handle all those weights
|
||||
if bilinear:
|
||||
self.up = nn.UpsamplingBilinear2d(scale_factor=2)
|
||||
# self.up = nn.ConvTranspose2d(in_ch, out_ch, 2, stride=2)
|
||||
else:
|
||||
self.up = nn.ConvTranspose2d(in_ch, out_ch, 2, stride=2)
|
||||
|
||||
self.conv = double_conv(in_ch, out_ch)
|
||||
|
||||
def forward(self, x1, x2):
|
Loading…
Reference in a new issue