mirror of
https://github.com/Laurent2916/REVA-QCAV.git
synced 2024-11-08 14:39:00 +00:00
feat: better paste augmentation
Former-commit-id: 2adef7920e5f317ac3fbe0205862e29d49c2af8f [formerly 41cb0c231b00a1e992847723eb754af1a9e28eee] Former-commit-id: f826c62f4aa3b0c9d2ea7b49f49b5839072ff259
This commit is contained in:
parent
92058da1d5
commit
8611d8cd7a
|
@ -1 +1 @@
|
|||
5ef2ef54312186cd3e3162869c4f237b69de3b1e
|
||||
0f3136c724eea42fdf1ee15e721ef33604e9a46d
|
|
@ -14,13 +14,7 @@ CONFIG = {
|
|||
"DIR_VALID_IMG": "/home/lilian/data_disk/lfainsin/val/",
|
||||
"DIR_TEST_IMG": "/home/lilian/data_disk/lfainsin/test/",
|
||||
"DIR_SPHERE": "/home/lilian/data_disk/lfainsin/spheres_prod/",
|
||||
# "FEATURES": [1, 2, 4, 8],
|
||||
# "FEATURES": [4, 8, 16, 32],
|
||||
"FEATURES": [8, 16, 32, 64],
|
||||
# "FEATURES": [4, 8, 16, 32, 64],
|
||||
# "FEATURES": [8, 16, 32, 64, 128],
|
||||
# "FEATURES": [16, 32, 64, 128],
|
||||
# "FEATURES": [64, 128, 256, 512],
|
||||
"N_CHANNELS": 3,
|
||||
"N_CLASSES": 1,
|
||||
"AMP": True,
|
||||
|
|
|
@ -3,7 +3,8 @@ from pathlib import Path
|
|||
|
||||
import albumentations as A
|
||||
import numpy as np
|
||||
from PIL import Image, ImageEnhance
|
||||
import torchvision.transforms as T
|
||||
from PIL import Image
|
||||
|
||||
|
||||
class RandomPaste(A.DualTransform):
|
||||
|
@ -38,105 +39,139 @@ class RandomPaste(A.DualTransform):
|
|||
def targets_as_params(self):
|
||||
return ["image"]
|
||||
|
||||
def apply(self, img, positions, paste_img, paste_mask, **params):
|
||||
def apply(self, img, augmentations, paste_img, paste_mask, **params):
|
||||
# convert img to Image, needed for `paste` function
|
||||
img = Image.fromarray(img)
|
||||
|
||||
# copy paste_img and paste_mask
|
||||
paste_mask = paste_mask.copy()
|
||||
paste_img = paste_img.copy()
|
||||
|
||||
# paste spheres
|
||||
for pos in positions:
|
||||
img.paste(paste_img, pos, paste_mask)
|
||||
for (x, y, shearx, sheary, shape, angle, brightness, contrast) in augmentations:
|
||||
paste_img = T.functional.adjust_contrast(
|
||||
paste_img,
|
||||
contrast_factor=contrast,
|
||||
)
|
||||
paste_img = T.functional.adjust_brightness(
|
||||
paste_img,
|
||||
brightness_factor=brightness,
|
||||
)
|
||||
paste_img = T.functional.affine(
|
||||
paste_img,
|
||||
scale=0.95,
|
||||
angle=angle,
|
||||
translate=(0, 0),
|
||||
shear=(shearx, sheary),
|
||||
interpolation=T.InterpolationMode.BICUBIC,
|
||||
)
|
||||
paste_img = T.functional.resize(
|
||||
paste_img,
|
||||
size=shape,
|
||||
interpolation=T.InterpolationMode.BICUBIC,
|
||||
)
|
||||
|
||||
paste_mask = T.functional.affine(
|
||||
paste_mask,
|
||||
scale=0.95,
|
||||
angle=angle,
|
||||
translate=(0, 0),
|
||||
shear=(shearx, sheary),
|
||||
interpolation=T.InterpolationMode.BICUBIC,
|
||||
)
|
||||
paste_mask = T.functional.resize(
|
||||
paste_mask,
|
||||
size=shape,
|
||||
interpolation=T.InterpolationMode.BICUBIC,
|
||||
)
|
||||
|
||||
img.paste(paste_img, (x, y), paste_mask)
|
||||
|
||||
return np.asarray(img.convert("RGB"))
|
||||
|
||||
def apply_to_mask(self, mask, positions, paste_mask, **params):
|
||||
def apply_to_mask(self, mask, augmentations, paste_mask, **params):
|
||||
# convert mask to Image, needed for `paste` function
|
||||
mask = Image.fromarray(mask)
|
||||
|
||||
# binarize the mask -> {0, 1}
|
||||
paste_mask_bin = paste_mask.point(lambda p: 1 if p > 10 else 0)
|
||||
# copy paste_img and paste_mask
|
||||
paste_mask = paste_mask.copy()
|
||||
|
||||
# paste spheres
|
||||
for pos in positions:
|
||||
mask.paste(paste_mask, pos, paste_mask_bin)
|
||||
for (x, y, shearx, sheary, shape, angle, _, _) in augmentations:
|
||||
paste_mask = T.functional.affine(
|
||||
paste_mask,
|
||||
scale=0.95,
|
||||
angle=angle,
|
||||
translate=(0, 0),
|
||||
shear=(shearx, sheary),
|
||||
interpolation=T.InterpolationMode.BICUBIC,
|
||||
)
|
||||
paste_mask = T.functional.resize(
|
||||
paste_mask,
|
||||
size=shape,
|
||||
interpolation=T.InterpolationMode.BICUBIC,
|
||||
)
|
||||
|
||||
# binarize the mask -> {0, 1}
|
||||
paste_mask_bin = paste_mask.point(lambda p: 1 if p > 10 else 0)
|
||||
|
||||
mask.paste(paste_mask, (x, y), paste_mask_bin)
|
||||
|
||||
return np.asarray(mask.convert("L"))
|
||||
|
||||
@staticmethod
|
||||
def overlap(positions, x1, y1, w, h):
|
||||
for x2, y2 in positions:
|
||||
if x1 + w >= x2 and x1 <= x2 + w and y1 + h >= y2 and y1 <= y2 + h:
|
||||
return True
|
||||
return False
|
||||
|
||||
def get_params_dependent_on_targets(self, params):
|
||||
# choose a random image and its corresponding mask
|
||||
img_path = rd.choice(self.images)
|
||||
mask_path = img_path.parent.joinpath("MASK.PNG")
|
||||
|
||||
# load the "paste" image
|
||||
# load images (w/ transparency)
|
||||
paste_img = Image.open(img_path).convert("RGBA")
|
||||
|
||||
# load its respective mask
|
||||
paste_mask = Image.open(mask_path).convert("LA")
|
||||
|
||||
# load the target image
|
||||
target_img = params["image"]
|
||||
|
||||
# compute shapes, for easier computations
|
||||
# compute shapes
|
||||
target_shape = np.array(target_img.shape[:2], dtype=np.uint)
|
||||
paste_shape = np.array(paste_img.size, dtype=np.uint)
|
||||
|
||||
# change paste_img's contrast randomly
|
||||
filter = ImageEnhance.Contrast(paste_img)
|
||||
paste_img = filter.enhance(rd.uniform(0.5, 1.5))
|
||||
|
||||
# change paste_img's brightness randomly
|
||||
filter = ImageEnhance.Brightness(paste_img)
|
||||
paste_img = filter.enhance(rd.uniform(0.5, 1.5))
|
||||
|
||||
# compute the minimum scaling to fit inside target image
|
||||
# compute minimum scaling to fit inside target
|
||||
min_scale = np.min(target_shape / paste_shape)
|
||||
|
||||
# randomize the relative scaling
|
||||
scale = rd.uniform(*self.scale_range)
|
||||
|
||||
# rotate the image and its mask
|
||||
angle = rd.uniform(0, 360)
|
||||
paste_img = paste_img.rotate(angle, expand=True)
|
||||
paste_mask = paste_mask.rotate(angle, expand=True)
|
||||
|
||||
# scale the "paste" image and its mask
|
||||
paste_img = paste_img.resize(
|
||||
tuple((paste_shape * min_scale * scale).astype(np.uint)),
|
||||
resample=Image.Resampling.LANCZOS,
|
||||
)
|
||||
paste_mask = paste_mask.resize(
|
||||
tuple((paste_shape * min_scale * scale).astype(np.uint)),
|
||||
resample=Image.Resampling.LANCZOS,
|
||||
)
|
||||
|
||||
# update paste_shape after scaling
|
||||
paste_shape = np.array(paste_img.size, dtype=np.uint)
|
||||
|
||||
# generate some positions
|
||||
positions = []
|
||||
# generate augmentations
|
||||
augmentations = []
|
||||
NB = rd.randint(1, self.nb)
|
||||
while len(positions) < NB:
|
||||
x = rd.randint(0, target_shape[0] - paste_shape[0])
|
||||
y = rd.randint(0, target_shape[1] - paste_shape[1])
|
||||
while len(augmentations) < NB: # TODO: mettre une condition d'arret ite max
|
||||
scale = rd.uniform(*self.scale_range) * min_scale
|
||||
shape = np.array(paste_shape * scale, dtype=np.uint)
|
||||
|
||||
x = rd.randint(0, target_shape[0] - shape[0])
|
||||
y = rd.randint(0, target_shape[1] - shape[1])
|
||||
|
||||
# check for overlapping
|
||||
if RandomPaste.overlap(positions, x, y, paste_shape[0], paste_shape[1]):
|
||||
if RandomPaste.overlap(augmentations, x, y, shape[0], shape[1]):
|
||||
continue
|
||||
|
||||
positions.append((x, y))
|
||||
shearx = rd.uniform(-2, 2)
|
||||
sheary = rd.uniform(-2, 2)
|
||||
|
||||
angle = rd.uniform(0, 360)
|
||||
|
||||
brightness = rd.uniform(0.8, 1.2)
|
||||
contrast = rd.uniform(0.8, 1.2)
|
||||
|
||||
augmentations.append((x, y, shearx, sheary, tuple(shape), angle, brightness, contrast))
|
||||
|
||||
params.update(
|
||||
{
|
||||
"positions": positions,
|
||||
"augmentations": augmentations,
|
||||
"paste_img": paste_img,
|
||||
"paste_mask": paste_mask,
|
||||
}
|
||||
)
|
||||
|
||||
return params
|
||||
|
||||
@staticmethod
|
||||
def overlap(positions, x1, y1, w, h):
|
||||
for x2, y2, _, _, _, _, _, _ in positions:
|
||||
if x1 + w >= x2 and x1 <= x2 + w and y1 + h >= y2 and y1 <= y2 + h:
|
||||
return True
|
||||
return False
|
||||
|
|
Loading…
Reference in a new issue