feat!: DETR

This commit is contained in:
Laureηt 2023-03-27 20:51:35 +02:00
parent 9d36719335
commit 8691735779
Signed by: Laurent
SSH key fingerprint: SHA256:kZEpW8cMJ54PDeCvOhzreNr4FSh6R13CMGH/POoO8DI
35 changed files with 6375 additions and 6940 deletions

View file

@ -1,16 +0,0 @@
FROM nvidia/cuda:11.7.1-cudnn8-devel-ubuntu20.04
WORKDIR /workspace
ARG USERNAME=vscode
ARG UID=1000
ARG GID=${UID}
COPY library-scripts/*.sh library-scripts/*.env /tmp/library-scripts/
RUN apt-get update \
&& export DEBIAN_FRONTEND=noninteractive \
&& /bin/bash /tmp/library-scripts/common-debian.sh \
&& apt-get install -y python3 python3-pip && pip install --upgrade pip --no-input \
&& apt-get autoremove -y && apt-get clean -y && rm -rf /var/lib/apt/lists/* /tmp/library-scripts
RUN su - vscode -c "curl -sSL https://install.python-poetry.org | python3 -"

View file

@ -1,24 +0,0 @@
{
"name": "sphereDetect-dev",
"dockerComposeFile": "docker-compose.yml",
"service": "dev",
"remoteUser": "vscode",
"workspaceFolder": "/workspace",
"postAttachCommand": "poetry install --with all",
"extensions": [
"ms-vscode-remote.remote-containers",
"ms-azuretools.vscode-docker",
"editorconfig.editorconfig",
"njpwerner.autodocstring",
"ms-python.python",
"ms-toolsai.jupyter",
"eamodio.gitlens"
],
"runArgs": [
"--gpus",
"all"
],
"forwardPorts": [
8080
]
}

View file

@ -1,28 +0,0 @@
version: "3"
services:
# development container
dev:
container_name: dev
build:
context: .
dockerfile: Dockerfile
volumes:
- ..:/workspace
stdin_open: true
network_mode: service:wandb
deploy:
resources:
reservations:
devices:
- capabilities:
- gpu
# wandb dashboard
wandb:
hostname: wandb-local
container_name: wandb-local
image: wandb/local
ports:
- 8080:8080
restart: unless-stopped

View file

@ -1,454 +0,0 @@
#!/usr/bin/env bash
#-------------------------------------------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License. See https://go.microsoft.com/fwlink/?linkid=2090316 for license information.
#-------------------------------------------------------------------------------------------------------------
#
# Docs: https://github.com/microsoft/vscode-dev-containers/blob/main/script-library/docs/common.md
# Maintainer: The VS Code and Codespaces Teams
set -e
INSTALL_ZSH=${INSTALLZSH:-"true"}
INSTALL_OH_MY_ZSH=${INSTALLOHMYZSH:-"true"}
UPGRADE_PACKAGES=${UPGRADEPACKAGES:-"true"}
USERNAME=${USERNAME:-"automatic"}
USER_UID=${UID:-"automatic"}
USER_GID=${GID:-"automatic"}
ADD_NON_FREE_PACKAGES=${NONFREEPACKAGES:-"false"}
DEV_CONTAINERS_DIR="/usr/local/etc/vscode-dev-containers"
MARKER_FILE="${DEV_CONTAINERS_DIR}/common"
if [ "$(id -u)" -ne 0 ]; then
echo -e 'Script must be run as root. Use sudo, su, or add "USER root" to your Dockerfile before running this script.'
exit 1
fi
# Ensure that login shells get the correct path if the user updated the PATH using ENV.
rm -f /etc/profile.d/00-restore-env.sh
echo "export PATH=${PATH//$(sh -lc 'echo $PATH')/\$PATH}" >/etc/profile.d/00-restore-env.sh
chmod +x /etc/profile.d/00-restore-env.sh
# If in automatic mode, determine if a user already exists, if not use vscode
if [ "${USERNAME}" = "auto" ] || [ "${USERNAME}" = "automatic" ]; then
USERNAME=""
POSSIBLE_USERS=("vscode" "node" "codespace" "$(awk -v val=1000 -F ":" '$3==val{print $1}' /etc/passwd)")
for CURRENT_USER in "${POSSIBLE_USERS[@]}"; do
if id -u ${CURRENT_USER} >/dev/null 2>&1; then
USERNAME=${CURRENT_USER}
break
fi
done
if [ "${USERNAME}" = "" ]; then
USERNAME=vscode
fi
elif [ "${USERNAME}" = "none" ]; then
USERNAME=root
USER_UID=0
USER_GID=0
fi
# Load markers to see which steps have already run
if [ -f "${MARKER_FILE}" ]; then
echo "Marker file found:"
cat "${MARKER_FILE}"
source "${MARKER_FILE}"
fi
# Ensure apt is in non-interactive to avoid prompts
export DEBIAN_FRONTEND=noninteractive
apt_get_update() {
echo "Running apt-get update..."
apt-get update -y
}
# Run install apt-utils to avoid debconf warning then verify presence of other common developer tools and dependencies
if [ "${PACKAGES_ALREADY_INSTALLED}" != "true" ]; then
package_list="apt-utils \
openssh-client \
gnupg2 \
dirmngr \
iproute2 \
procps \
lsof \
htop \
net-tools \
psmisc \
curl \
tree \
wget \
rsync \
ca-certificates \
unzip \
bzip2 \
zip \
nano \
vim-tiny \
less \
jq \
lsb-release \
apt-transport-https \
dialog \
libc6 \
libgcc1 \
libkrb5-3 \
libgssapi-krb5-2 \
libicu[0-9][0-9] \
liblttng-ust[0-9] \
libstdc++6 \
zlib1g \
locales \
sudo \
ncdu \
man-db \
strace \
manpages \
manpages-dev \
init-system-helpers"
# Needed for adding manpages-posix and manpages-posix-dev which are non-free packages in Debian
if [ "${ADD_NON_FREE_PACKAGES}" = "true" ]; then
# Bring in variables from /etc/os-release like VERSION_CODENAME
. /etc/os-release
sed -i -E "s/deb http:\/\/(deb|httpredir)\.debian\.org\/debian ${VERSION_CODENAME} main/deb http:\/\/\1\.debian\.org\/debian ${VERSION_CODENAME} main contrib non-free/" /etc/apt/sources.list
sed -i -E "s/deb-src http:\/\/(deb|httredir)\.debian\.org\/debian ${VERSION_CODENAME} main/deb http:\/\/\1\.debian\.org\/debian ${VERSION_CODENAME} main contrib non-free/" /etc/apt/sources.list
sed -i -E "s/deb http:\/\/(deb|httpredir)\.debian\.org\/debian ${VERSION_CODENAME}-updates main/deb http:\/\/\1\.debian\.org\/debian ${VERSION_CODENAME}-updates main contrib non-free/" /etc/apt/sources.list
sed -i -E "s/deb-src http:\/\/(deb|httpredir)\.debian\.org\/debian ${VERSION_CODENAME}-updates main/deb http:\/\/\1\.debian\.org\/debian ${VERSION_CODENAME}-updates main contrib non-free/" /etc/apt/sources.list
sed -i "s/deb http:\/\/security\.debian\.org\/debian-security ${VERSION_CODENAME}\/updates main/deb http:\/\/security\.debian\.org\/debian-security ${VERSION_CODENAME}\/updates main contrib non-free/" /etc/apt/sources.list
sed -i "s/deb-src http:\/\/security\.debian\.org\/debian-security ${VERSION_CODENAME}\/updates main/deb http:\/\/security\.debian\.org\/debian-security ${VERSION_CODENAME}\/updates main contrib non-free/" /etc/apt/sources.list
sed -i "s/deb http:\/\/deb\.debian\.org\/debian ${VERSION_CODENAME}-backports main/deb http:\/\/deb\.debian\.org\/debian ${VERSION_CODENAME}-backports main contrib non-free/" /etc/apt/sources.list
sed -i "s/deb-src http:\/\/deb\.debian\.org\/debian ${VERSION_CODENAME}-backports main/deb http:\/\/deb\.debian\.org\/debian ${VERSION_CODENAME}-backports main contrib non-free/" /etc/apt/sources.list
# Handle bullseye location for security https://www.debian.org/releases/bullseye/amd64/release-notes/ch-information.en.html
sed -i "s/deb http:\/\/security\.debian\.org\/debian-security ${VERSION_CODENAME}-security main/deb http:\/\/security\.debian\.org\/debian-security ${VERSION_CODENAME}-security main contrib non-free/" /etc/apt/sources.list
sed -i "s/deb-src http:\/\/security\.debian\.org\/debian-security ${VERSION_CODENAME}-security main/deb http:\/\/security\.debian\.org\/debian-security ${VERSION_CODENAME}-security main contrib non-free/" /etc/apt/sources.list
echo "Running apt-get update..."
apt-get update
package_list="${package_list} manpages-posix manpages-posix-dev"
else
apt_get_update
fi
# Install libssl1.1 if available
if [[ ! -z $(apt-cache --names-only search ^libssl1.1$) ]]; then
package_list="${package_list} libssl1.1"
fi
# Install appropriate version of libssl1.0.x if available
libssl_package=$(dpkg-query -f '${db:Status-Abbrev}\t${binary:Package}\n' -W 'libssl1\.0\.?' 2>&1 || echo '')
if [ "$(echo "$LIlibssl_packageBSSL" | grep -o 'libssl1\.0\.[0-9]:' | uniq | sort | wc -l)" -eq 0 ]; then
if [[ ! -z $(apt-cache --names-only search ^libssl1.0.2$) ]]; then
# Debian 9
package_list="${package_list} libssl1.0.2"
elif [[ ! -z $(apt-cache --names-only search ^libssl1.0.0$) ]]; then
# Ubuntu 18.04, 16.04, earlier
package_list="${package_list} libssl1.0.0"
fi
fi
echo "Packages to verify are installed: ${package_list}"
apt-get -y install --no-install-recommends ${package_list} 2> >(grep -v 'debconf: delaying package configuration, since apt-utils is not installed' >&2)
# Install git if not already installed (may be more recent than distro version)
if ! type git >/dev/null 2>&1; then
apt-get -y install --no-install-recommends git
fi
PACKAGES_ALREADY_INSTALLED="true"
fi
# Get to latest versions of all packages
if [ "${UPGRADE_PACKAGES}" = "true" ]; then
apt_get_update
apt-get -y upgrade --no-install-recommends
apt-get autoremove -y
fi
# Ensure at least the en_US.UTF-8 UTF-8 locale is available.
# Common need for both applications and things like the agnoster ZSH theme.
if [ "${LOCALE_ALREADY_SET}" != "true" ] && ! grep -o -E '^\s*en_US.UTF-8\s+UTF-8' /etc/locale.gen >/dev/null; then
echo "en_US.UTF-8 UTF-8" >>/etc/locale.gen
locale-gen
LOCALE_ALREADY_SET="true"
fi
# Create or update a non-root user to match UID/GID.
group_name="${USERNAME}"
if id -u ${USERNAME} >/dev/null 2>&1; then
# User exists, update if needed
if [ "${USER_GID}" != "automatic" ] && [ "$USER_GID" != "$(id -g $USERNAME)" ]; then
group_name="$(id -gn $USERNAME)"
groupmod --gid $USER_GID ${group_name}
usermod --gid $USER_GID $USERNAME
fi
if [ "${USER_UID}" != "automatic" ] && [ "$USER_UID" != "$(id -u $USERNAME)" ]; then
usermod --uid $USER_UID $USERNAME
fi
else
# Create user
if [ "${USER_GID}" = "automatic" ]; then
groupadd $USERNAME
else
groupadd --gid $USER_GID $USERNAME
fi
if [ "${USER_UID}" = "automatic" ]; then
useradd -s /bin/bash --gid $USERNAME -m $USERNAME
else
useradd -s /bin/bash --uid $USER_UID --gid $USERNAME -m $USERNAME
fi
fi
# Add add sudo support for non-root user
if [ "${USERNAME}" != "root" ] && [ "${EXISTING_NON_ROOT_USER}" != "${USERNAME}" ]; then
echo $USERNAME ALL=\(root\) NOPASSWD:ALL >/etc/sudoers.d/$USERNAME
chmod 0440 /etc/sudoers.d/$USERNAME
EXISTING_NON_ROOT_USER="${USERNAME}"
fi
# ** Shell customization section **
if [ "${USERNAME}" = "root" ]; then
user_rc_path="/root"
else
user_rc_path="/home/${USERNAME}"
fi
# Restore user .bashrc defaults from skeleton file if it doesn't exist or is empty
if [ ! -f "${user_rc_path}/.bashrc" ] || [ ! -s "${user_rc_path}/.bashrc" ]; then
cp /etc/skel/.bashrc "${user_rc_path}/.bashrc"
fi
# Restore user .profile defaults from skeleton file if it doesn't exist or is empty
if [ ! -f "${user_rc_path}/.profile" ] || [ ! -s "${user_rc_path}/.profile" ]; then
cp /etc/skel/.profile "${user_rc_path}/.profile"
fi
# .bashrc/.zshrc snippet
rc_snippet="$(
cat <<'EOF'
if [ -z "${USER}" ]; then export USER=$(whoami); fi
if [[ "${PATH}" != *"$HOME/.local/bin"* ]]; then export PATH="${PATH}:$HOME/.local/bin"; fi
# Display optional first run image specific notice if configured and terminal is interactive
if [ -t 1 ] && [[ "${TERM_PROGRAM}" = "vscode" || "${TERM_PROGRAM}" = "codespaces" ]] && [ ! -f "$HOME/.config/vscode-dev-containers/first-run-notice-already-displayed" ]; then
if [ -f "${DEV_CONTAINERS_DIR}/first-run-notice.txt" ]; then
cat "${DEV_CONTAINERS_DIR}/first-run-notice.txt"
elif [ -f "/workspaces/.codespaces/shared/first-run-notice.txt" ]; then
cat "/workspaces/.codespaces/shared/first-run-notice.txt"
fi
mkdir -p "$HOME/.config/vscode-dev-containers"
# Mark first run notice as displayed after 10s to avoid problems with fast terminal refreshes hiding it
((sleep 10s; touch "$HOME/.config/vscode-dev-containers/first-run-notice-already-displayed") &)
fi
# Set the default git editor if not already set
if [ -z "$(git config --get core.editor)" ] && [ -z "${GIT_EDITOR}" ]; then
if [ "${TERM_PROGRAM}" = "vscode" ]; then
if [[ -n $(command -v code-insiders) && -z $(command -v code) ]]; then
export GIT_EDITOR="code-insiders --wait"
else
export GIT_EDITOR="code --wait"
fi
fi
fi
EOF
)"
# code shim, it fallbacks to code-insiders if code is not available
cat <<'EOF' >/usr/local/bin/code
#!/bin/sh
get_in_path_except_current() {
which -a "$1" | grep -A1 "$0" | grep -v "$0"
}
code="$(get_in_path_except_current code)"
if [ -n "$code" ]; then
exec "$code" "$@"
elif [ "$(command -v code-insiders)" ]; then
exec code-insiders "$@"
else
echo "code or code-insiders is not installed" >&2
exit 127
fi
EOF
chmod +x /usr/local/bin/code
# systemctl shim - tells people to use 'service' if systemd is not running
cat <<'EOF' >/usr/local/bin/systemctl
#!/bin/sh
set -e
if [ -d "/run/systemd/system" ]; then
exec /bin/systemctl/systemctl "$@"
else
echo '\n"systemd" is not running in this container due to its overhead.\nUse the "service" command to start services instead. e.g.: \n\nservice --status-all'
fi
EOF
chmod +x /usr/local/bin/systemctl
# Codespaces bash and OMZ themes - partly inspired by https://github.com/ohmyzsh/ohmyzsh/blob/master/themes/robbyrussell.zsh-theme
codespaces_bash="$(
cat \
<<'EOF'
# Codespaces bash prompt theme
__bash_prompt() {
local userpart='`export XIT=$? \
&& [ ! -z "${GITHUB_USER}" ] && echo -n "\[\033[0;32m\]@${GITHUB_USER} " || echo -n "\[\033[0;32m\]\u " \
&& [ "$XIT" -ne "0" ] && echo -n "\[\033[1;31m\]➜" || echo -n "\[\033[0m\]➜"`'
local gitbranch='`\
if [ "$(git config --get codespaces-theme.hide-status 2>/dev/null)" != 1 ]; then \
export BRANCH=$(git symbolic-ref --short HEAD 2>/dev/null || git rev-parse --short HEAD 2>/dev/null); \
if [ "${BRANCH}" != "" ]; then \
echo -n "\[\033[0;36m\](\[\033[1;31m\]${BRANCH}" \
&& if git ls-files --error-unmatch -m --directory --no-empty-directory -o --exclude-standard ":/*" > /dev/null 2>&1; then \
echo -n " \[\033[1;33m\]✗"; \
fi \
&& echo -n "\[\033[0;36m\]) "; \
fi; \
fi`'
local lightblue='\[\033[1;34m\]'
local removecolor='\[\033[0m\]'
PS1="${userpart} ${lightblue}\w ${gitbranch}${removecolor}\$ "
unset -f __bash_prompt
}
__bash_prompt
EOF
)"
codespaces_zsh="$(
cat \
<<'EOF'
# Codespaces zsh prompt theme
__zsh_prompt() {
local prompt_username
if [ ! -z "${GITHUB_USER}" ]; then
prompt_username="@${GITHUB_USER}"
else
prompt_username="%n"
fi
PROMPT="%{$fg[green]%}${prompt_username} %(?:%{$reset_color%}➜ :%{$fg_bold[red]%}➜ )" # User/exit code arrow
PROMPT+='%{$fg_bold[blue]%}%(5~|%-1~/…/%3~|%4~)%{$reset_color%} ' # cwd
PROMPT+='$([ "$(git config --get codespaces-theme.hide-status 2>/dev/null)" != 1 ] && git_prompt_info)' # Git status
PROMPT+='%{$fg[white]%}$ %{$reset_color%}'
unset -f __zsh_prompt
}
ZSH_THEME_GIT_PROMPT_PREFIX="%{$fg_bold[cyan]%}(%{$fg_bold[red]%}"
ZSH_THEME_GIT_PROMPT_SUFFIX="%{$reset_color%} "
ZSH_THEME_GIT_PROMPT_DIRTY=" %{$fg_bold[yellow]%}✗%{$fg_bold[cyan]%})"
ZSH_THEME_GIT_PROMPT_CLEAN="%{$fg_bold[cyan]%})"
__zsh_prompt
EOF
)"
# Add RC snippet and custom bash prompt
if [ "${RC_SNIPPET_ALREADY_ADDED}" != "true" ]; then
echo "${rc_snippet}" >>/etc/bash.bashrc
echo "${codespaces_bash}" >>"${user_rc_path}/.bashrc"
echo 'export PROMPT_DIRTRIM=4' >>"${user_rc_path}/.bashrc"
if [ "${USERNAME}" != "root" ]; then
echo "${codespaces_bash}" >>"/root/.bashrc"
echo 'export PROMPT_DIRTRIM=4' >>"/root/.bashrc"
fi
chown ${USERNAME}:${group_name} "${user_rc_path}/.bashrc"
RC_SNIPPET_ALREADY_ADDED="true"
fi
# Optionally install and configure zsh and Oh My Zsh!
if [ "${INSTALL_ZSH}" = "true" ]; then
if ! type zsh >/dev/null 2>&1; then
apt_get_update
apt-get install -y zsh
fi
if [ "${ZSH_ALREADY_INSTALLED}" != "true" ]; then
echo "${rc_snippet}" >>/etc/zsh/zshrc
ZSH_ALREADY_INSTALLED="true"
fi
# Adapted, simplified inline Oh My Zsh! install steps that adds, defaults to a codespaces theme.
# See https://github.com/ohmyzsh/ohmyzsh/blob/master/tools/install.sh for official script.
oh_my_install_dir="${user_rc_path}/.oh-my-zsh"
if [ ! -d "${oh_my_install_dir}" ] && [ "${INSTALL_OH_MY_ZSH}" = "true" ]; then
template_path="${oh_my_install_dir}/templates/zshrc.zsh-template"
user_rc_file="${user_rc_path}/.zshrc"
umask g-w,o-w
mkdir -p ${oh_my_install_dir}
git clone --depth=1 \
-c core.eol=lf \
-c core.autocrlf=false \
-c fsck.zeroPaddedFilemode=ignore \
-c fetch.fsck.zeroPaddedFilemode=ignore \
-c receive.fsck.zeroPaddedFilemode=ignore \
"https://github.com/ohmyzsh/ohmyzsh" "${oh_my_install_dir}" 2>&1
echo -e "$(cat "${template_path}")\nDISABLE_AUTO_UPDATE=true\nDISABLE_UPDATE_PROMPT=true" >${user_rc_file}
sed -i -e 's/ZSH_THEME=.*/ZSH_THEME="codespaces"/g' ${user_rc_file}
mkdir -p ${oh_my_install_dir}/custom/themes
echo "${codespaces_zsh}" >"${oh_my_install_dir}/custom/themes/codespaces.zsh-theme"
# Shrink git while still enabling updates
cd "${oh_my_install_dir}"
git repack -a -d -f --depth=1 --window=1
# Copy to non-root user if one is specified
if [ "${USERNAME}" != "root" ]; then
cp -rf "${user_rc_file}" "${oh_my_install_dir}" /root
chown -R ${USERNAME}:${group_name} "${user_rc_path}"
fi
fi
fi
# Persist image metadata info, script if meta.env found in same directory
meta_info_script="$(
cat <<'EOF'
#!/bin/sh
. /usr/local/etc/vscode-dev-containers/meta.env
# Minimal output
if [ "$1" = "version" ] || [ "$1" = "image-version" ]; then
echo "${VERSION}"
exit 0
elif [ "$1" = "release" ]; then
echo "${GIT_REPOSITORY_RELEASE}"
exit 0
elif [ "$1" = "content" ] || [ "$1" = "content-url" ] || [ "$1" = "contents" ] || [ "$1" = "contents-url" ]; then
echo "${CONTENTS_URL}"
exit 0
fi
#Full output
echo
echo "Development container image information"
echo
if [ ! -z "${VERSION}" ]; then echo "- Image version: ${VERSION}"; fi
if [ ! -z "${DEFINITION_ID}" ]; then echo "- Definition ID: ${DEFINITION_ID}"; fi
if [ ! -z "${VARIANT}" ]; then echo "- Variant: ${VARIANT}"; fi
if [ ! -z "${GIT_REPOSITORY}" ]; then echo "- Source code repository: ${GIT_REPOSITORY}"; fi
if [ ! -z "${GIT_REPOSITORY_RELEASE}" ]; then echo "- Source code release/branch: ${GIT_REPOSITORY_RELEASE}"; fi
if [ ! -z "${BUILD_TIMESTAMP}" ]; then echo "- Timestamp: ${BUILD_TIMESTAMP}"; fi
if [ ! -z "${CONTENTS_URL}" ]; then echo && echo "More info: ${CONTENTS_URL}"; fi
echo
EOF
)"
if [ -f "${DEV_CONTAINERS_DIR}/meta.env" ]; then
echo "${meta_info_script}" >/usr/local/bin/devcontainer-info
chmod +x /usr/local/bin/devcontainer-info
fi
if [ ! -d "${DEV_CONTAINERS_DIR}" ]; then
mkdir -p "$(dirname "${MARKER_FILE}")"
fi
# Write marker file
echo -e "\
PACKAGES_ALREADY_INSTALLED=${PACKAGES_ALREADY_INSTALLED}\n\
LOCALE_ALREADY_SET=${LOCALE_ALREADY_SET}\n\
EXISTING_NON_ROOT_USER=${EXISTING_NON_ROOT_USER}\n\
RC_SNIPPET_ALREADY_ADDED=${RC_SNIPPET_ALREADY_ADDED}\n\
ZSH_ALREADY_INSTALLED=${ZSH_ALREADY_INSTALLED}" >"${MARKER_FILE}"
echo "Done!"

179
.gitignore vendored
View file

@ -1,177 +1,8 @@
# Personnal ignores
wandb/
wandb-local/
data/
dataset*/
*.parquet
.venv/
lightning_logs/
checkpoints/
*.pth
*.onnx
*.ckpt
images/
*.png
*.jpg
# https://github.com/github/gitignore/blob/main/Python.gitignore
# Basic .gitignore for a python repo.
# Byte-compiled / optimized / DLL files
__pycache__/
*.py[cod]
*$py.class
# C extensions
*.so
# Distribution / packaging
.Python
build/
develop-eggs/
dist/
downloads/
eggs/
.eggs/
lib/
lib64/
parts/
sdist/
var/
wheels/
share/python-wheels/
*.egg-info/
.installed.cfg
*.egg
MANIFEST
# PyInstaller
# Usually these files are written by a python script from a template
# before PyInstaller builds the exe, so as to inject date/other infos into it.
*.manifest
*.spec
# Installer logs
pip-log.txt
pip-delete-this-directory.txt
# Unit test / coverage reports
htmlcov/
.tox/
.nox/
.coverage
.coverage.*
.cache
nosetests.xml
coverage.xml
*.cover
*.py,cover
.hypothesis/
.pytest_cache/
cover/
# Translations
*.mo
*.pot
# Django stuff:
*.log
local_settings.py
db.sqlite3
db.sqlite3-journal
# Flask stuff:
instance/
.webassets-cache
# Scrapy stuff:
.scrapy
# Sphinx documentation
docs/_build/
# PyBuilder
.pybuilder/
target/
# Jupyter Notebook
.ipynb_checkpoints
# IPython
profile_default/
ipython_config.py
# pyenv
# For a library or package, you might want to ignore these files since the code is
# intended to run in multiple environments; otherwise, check them in:
# .python-version
# pipenv
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
# However, in case of collaboration, if having platform-specific dependencies or dependencies
# having no cross-platform support, pipenv may install dependencies that don't work, or not
# install all needed dependencies.
#Pipfile.lock
# poetry
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
# This is especially recommended for binary packages to ensure reproducibility, and is more
# commonly ignored for libraries.
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
#poetry.lock
# pdm
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
#pdm.lock
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
# in version control.
# https://pdm.fming.dev/#use-with-ide
.pdm.toml
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
__pypackages__/
# Celery stuff
celerybeat-schedule
celerybeat.pid
# SageMath parsed files
*.sage.py
# Environments
.env
.venv
env/
venv/
ENV/
env.bak/
venv.bak/
# Spyder project settings
.spyderproject
.spyproject
# Rope project settings
.ropeproject
# mkdocs documentation
/site
# mypy
.mypy_cache/
.dmypy.json
dmypy.json
# Pyre type checker
.pyre/
# pytype static type analyzer
.pytype/
# Cython debug symbols
cython_debug/
# PyCharm
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
# and can be added to the global gitignore or merged into this file. For a more nuclear
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
#.idea/
*.jpg

View file

@ -1,46 +0,0 @@
repos:
- repo: https://github.com/asottile/pyupgrade
rev: "v2.37.3"
hooks:
- id: pyupgrade
- repo: https://github.com/python-poetry/poetry
rev: "1.2.0rc1"
hooks:
- id: poetry-check
- id: poetry-lock
- repo: https://github.com/pre-commit/pre-commit-hooks
rev: "v4.3.0"
hooks:
# - id: check-added-large-files
- id: check-executables-have-shebangs
- id: check-merge-conflict
- id: check-symlinks
# - id: check-json
- id: check-toml
- id: check-yaml
- id: debug-statements
- id: destroyed-symlinks
- id: detect-private-key
- id: end-of-file-fixer
- id: fix-byte-order-marker
- id: mixed-line-ending
- id: trailing-whitespace
- repo: https://github.com/pre-commit/mirrors-mypy
rev: "v0.971"
hooks:
- id: mypy
- repo: https://github.com/pycqa/isort
rev: "5.10.1"
hooks:
- id: isort
name: isort (python)
- repo: https://github.com/psf/black
rev: "22.8.0"
hooks:
- id: black
language_version: python

View file

@ -1,11 +0,0 @@
{
"recommendations": [
"ms-vscode-remote.remote-containers",
"ms-azuretools.vscode-docker",
"editorconfig.editorconfig",
"njpwerner.autodocstring",
"ms-python.python",
"ms-toolsai.jupyter",
"eamodio.gitlens"
]
}

45
.vscode/launch.json vendored
View file

@ -1,29 +1,36 @@
{
// Use IntelliSense to learn about possible attributes.
// Hover to view descriptions of existing attributes.
// For more information, visit: https://go.microsoft.com/fwlink/?linkid=830387
"version": "0.2.0",
"configurations": [
{
"name": "Train",
"name": "Python: Current File",
"type": "python",
"request": "launch",
"program": "${workspaceFolder}/src/train.py",
"console": "integratedTerminal",
"justMyCode": false,
},
{
"name": "Predict",
"type": "python",
"request": "launch",
"program": "${workspaceFolder}/src/predict.py",
"console": "integratedTerminal",
"justMyCode": false,
"program": "${workspaceFolder}/src/main.py",
// "program": "${workspaceFolder}/src/spheres.py",
// "program": "${workspaceFolder}/src/datamodule.py",
"args": [
"--input",
"images/input.png",
"--output",
"images/output.png",
"--model",
"checkpoints/model.onnx"
]
// "fit",
"predict",
// "--ckpt_path",
// "${workspaceFolder}/lightning_logs/version_264/checkpoints/epoch=9-st&ep=1000.ckpt",
"--data.num_workers",
"0",
"--trainer.benchmark",
"false",
"--trainer.num_sanity_val_steps",
"0",
"--data.persistent_workers",
"false",
"--data.batch_size",
"1",
"--trainer.val_check_interval",
"1"
],
"console": "integratedTerminal",
"justMyCode": false
}
]
}

View file

@ -1,5 +1,6 @@
{
"python.defaultInterpreterPath": ".venv/bin/python",
// "python.defaultInterpreterPath": ".venv/bin/python",
"python.analysis.typeCheckingMode": "off",
"python.formatting.provider": "black",
"editor.formatOnSave": true,
"python.linting.enabled": true,
@ -7,13 +8,12 @@
"python.linting.flake8Enabled": true,
"python.linting.mypyEnabled": true,
"python.linting.banditEnabled": true,
"jupyter.debugJustMyCode": false,
"python.languageServer": "Pylance",
"[python]": {
"editor.codeActionsOnSave": {
"source.organizeImports": true
}
},
"files.insertFinalNewline": true,
"files.exclude": {
"**/.git": true,
"**/.svn": true,
@ -23,5 +23,5 @@
"**/Thumbs.db": true,
"**/__pycache__": true,
"**/.mypy_cache": true,
}
},
}

8089
poetry.lock generated

File diff suppressed because it is too large Load diff

View file

@ -1,52 +1,55 @@
[tool.poetry]
authors = ["Laurent Fainsin <laurent@fainsin.bzh>"]
description = "Simple neural network to detect calibration spheres in images."
license = "MIT"
name = "sphereDetect"
readme = "README.md"
version = "2.0.0"
authors = ["Laurent Fainsin <laurentfainsin@protonmail.com>"]
description = ""
name = "label-studio"
version = "1.0.0"
[tool.poetry.dependencies]
albumentations = "^1.2.1"
lightning-bolts = "^0.5.0"
numpy = "^1.23.2"
pycocotools = "^2.0.4"
python = ">=3.8,<3.11"
pytorch-lightning = "^1.7.4"
rich = "^12.5.1"
torch = "^1.12.1"
torchmetrics = "^0.9.3"
torchvision = "^0.13.1"
wandb = "^0.13.2"
datasets = "^2.9.0"
fastapi = "0.86.0"
jsonargparse = {extras = ["signatures"], version = "^4.20.0"}
lightning = "1.9.1"
matplotlib = "^3.7.0"
numpy = "^1.24.2"
opencv-python = "^4.7.0.72"
opencv-python-headless = "^4.7.0.72"
python = ">=3.8,<3.12"
rich = "^13.3.1"
scipy = "^1.10.0"
timm = "^0.6.12"
torch = "^1.13.1"
transformers = "^4.26.1"
[tool.poetry.group.notebooks]
optional = true
[tool.poetry.group.notebooks.dependencies]
ipykernel = "^6.15.3"
matplotlib = "^3.5.3"
onnx = "^1.12.0"
onnxruntime = "^1.12.1"
onnxruntime-gpu = "^1.12.1"
ipykernel = "^6.20.2"
ipywidgets = "^8.0.4"
jupyter = "^1.0.0"
matplotlib = "^3.6.3"
[tool.poetry.group.dev.dependencies]
Flake8-pyproject = "^1.1.0"
bandit = "^1.7.4"
black = {extras = ["jupyter"], version = "^22.8.0"}
black = "^22.8.0"
flake8 = "^5.0.4"
flake8-docstrings = "^1.6.0"
isort = "^5.10.1"
mypy = "^0.971"
pre-commit = "^2.20.0"
tensorboard = "^2.12.0"
torchtyping = "^0.1.4"
torch-tb-profiler = "^0.4.1"
[build-system]
build-backend = "poetry.core.masonry.api"
requires = ["poetry-core>=1.0.0"]
requires = ["poetry-core"]
[tool.flake8]
# rules ignored
extend-ignore = ["W503", "D401", "D403"]
per-file-ignores = ["__init__.py:F401", "__init__.py:D104"]
extend-ignore = ["W503", "D401", "D100", "D104"]
per-file-ignores = ["__init__.py:F401"]
# black
ignore = "E203"
max-line-length = 120

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View file

@ -1 +0,0 @@
from .dataloader import Spheres

View file

@ -1,100 +0,0 @@
"""Pytorch Lightning DataModules."""
import albumentations as A
import pytorch_lightning as pl
import wandb
from albumentations.pytorch import ToTensorV2
from torch.utils.data import DataLoader
from .dataset import LabeledDataset, RealDataset
def collate_fn(batch):
return tuple(zip(*batch))
class Spheres(pl.LightningDataModule):
"""Pytorch Lightning DataModule, encapsulating common PyTorch functions."""
def train_dataloader(self) -> DataLoader:
"""PyTorch training Dataloader.
Returns:
DataLoader: the training dataloader
"""
transforms = A.Compose(
[
# A.Flip(),
# A.ColorJitter(),
# A.ToGray(p=0.01),
# A.GaussianBlur(),
# A.MotionBlur(),
# A.ISONoise(),
# A.ImageCompression(),
A.Normalize(
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225],
max_pixel_value=255,
), # [0, 255] -> coco (?) normalized
ToTensorV2(), # HWC -> CHW
],
bbox_params=A.BboxParams(
format="pascal_voc",
min_area=0.0,
min_visibility=0.0,
label_fields=["labels"],
),
)
# dataset = LabeledDataset(image_dir="/dev/shm/TRAIN/", transforms=transforms)
dataset = LabeledDataset(image_dir=wandb.config.DIR_TRAIN_IMG, transforms=transforms)
# dataset = Subset(dataset, range(6 * 200)) # subset for debugging purpose
# dataset = Subset(dataset, [0] * 320) # overfit test
return DataLoader(
dataset,
shuffle=True,
persistent_workers=True,
prefetch_factor=wandb.config.PREFETCH_FACTOR,
batch_size=wandb.config.TRAIN_BATCH_SIZE,
pin_memory=wandb.config.PIN_MEMORY,
num_workers=wandb.config.WORKERS,
collate_fn=collate_fn,
)
def val_dataloader(self) -> DataLoader:
"""PyTorch validation Dataloader.
Returns:
DataLoader: the validation dataloader
"""
transforms = A.Compose(
[
A.Normalize(
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225],
max_pixel_value=255,
), # [0, 255] -> [0.0, 1.0] normalized
ToTensorV2(), # HWC -> CHW
],
bbox_params=A.BboxParams(
format="pascal_voc",
min_area=0.0,
min_visibility=0.0,
label_fields=["labels"],
),
)
# dataset = RealDataset(root="/dev/shm/TEST/", transforms=transforms)
dataset = RealDataset(root=wandb.config.DIR_VALID_IMG, transforms=transforms)
return DataLoader(
dataset,
shuffle=False,
persistent_workers=True,
prefetch_factor=wandb.config.PREFETCH_FACTOR,
batch_size=wandb.config.VALID_BATCH_SIZE,
pin_memory=wandb.config.PIN_MEMORY,
num_workers=wandb.config.WORKERS,
collate_fn=collate_fn,
)

View file

@ -1,215 +0,0 @@
"""Pytorch Datasets."""
import os
from pathlib import Path
import albumentations as A
import numpy as np
import torch
from PIL import Image
from torch.utils.data import Dataset
class SyntheticDataset(Dataset):
def __init__(self, image_dir: str, transform: A.Compose) -> None:
self.images = list(Path(image_dir).glob("**/*.jpg"))
self.transform = transform
def __len__(self) -> int:
return len(self.images)
def __getitem__(self, index: int):
# open and convert image
image = np.ascontiguousarray(
Image.open(
self.images[index],
).convert("RGB"),
dtype=np.uint8,
)
# create empty mask of same size
mask = np.zeros(
(*image.shape[:2], 4),
dtype=np.uint8,
)
# augment image and mask
augmentations = self.transform(image=image, mask=mask)
image = augmentations["image"]
mask = augmentations["mask"]
return image, mask
class RealDataset(Dataset):
def __init__(self, root, transforms=None) -> None:
self.root = root
self.transforms = transforms
# load all image files, sorting them to ensure that they are aligned
self.imgs = list(sorted(os.listdir(os.path.join(root, "images"))))
self.masks = list(sorted(os.listdir(os.path.join(root, "masks"))))
self.res = A.LongestMaxSize(max_size=1024)
def __len__(self) -> int:
return len(self.imgs)
def __getitem__(self, idx: int):
# create paths from ids
image_path = os.path.join(self.root, "images", self.imgs[idx])
mask_path = os.path.join(self.root, "masks", self.masks[idx])
# load image and mask
image = Image.open(image_path).convert("RGB")
mask = Image.open(mask_path).convert("L")
# convert to numpy arrays
image = np.ascontiguousarray(image)
mask = np.ascontiguousarray(mask)
# resize images, TODO: remove ?
aug = self.res(image=image, mask=mask)
image = aug["image"]
mask = aug["mask"]
# get ids from mask
obj_ids = np.unique(mask)
obj_ids = obj_ids[1:] # first id is the background, so remove it
# split the color-encoded mask into a set of binary masks
masks = mask == obj_ids[:, None, None]
masks = masks.astype(np.uint8) # cast to uint8 for albumentations
# create bboxes from masks (pascal format)
num_objs = len(obj_ids)
bboxes = []
for i in range(num_objs):
pos = np.where(masks[i])
xmin = np.min(pos[1])
xmax = np.max(pos[1])
ymin = np.min(pos[0])
ymax = np.max(pos[0])
bboxes.append([xmin, ymin, xmax, ymax])
# convert arrays for albumentations
bboxes = torch.as_tensor(bboxes, dtype=torch.int64)
labels = torch.ones((num_objs,), dtype=torch.int64) # assume there is only one class (id=1)
masks = list(np.asarray(masks))
if self.transforms is not None:
# arrange transform data
data = {
"image": image,
"labels": labels,
"bboxes": bboxes,
"masks": masks,
}
# apply transform
augmented = self.transforms(**data)
# get augmented data
image = augmented["image"]
bboxes = augmented["bboxes"]
labels = augmented["labels"]
masks = augmented["masks"]
bboxes = torch.as_tensor(bboxes, dtype=torch.int64)
labels = torch.as_tensor(labels, dtype=torch.int64) # int64 required by torchvision maskrcnn
masks = torch.stack(masks) # stack masks, required by torchvision maskrcnn
area = (bboxes[:, 3] - bboxes[:, 1]) * (bboxes[:, 2] - bboxes[:, 0])
image_id = torch.tensor([idx])
iscrowd = torch.zeros((num_objs,), dtype=torch.int64) # assume all instances are not crowd
target = {
"boxes": bboxes,
"labels": labels,
"masks": masks,
"area": area,
"image_id": image_id,
"iscrowd": iscrowd,
}
return image, target
class LabeledDataset(Dataset):
def __init__(self, image_dir, transforms) -> None:
self.images = list(Path(image_dir).glob("**/*.jpg"))
self.transforms = transforms
def __len__(self) -> int:
return len(self.images)
def __getitem__(self, idx: int):
# open and convert image
image = np.ascontiguousarray(
Image.open(self.images[idx]).convert("RGB"),
)
# open and convert mask
mask_path = self.images[idx].parent.joinpath("MASK.PNG")
mask = np.ascontiguousarray(
Image.open(mask_path).convert("L"),
)
# get ids from mask
obj_ids = np.unique(mask)
obj_ids = obj_ids[1:] # first id is the background, so remove it
# split the color-encoded mask into a set of binary masks
masks = mask == obj_ids[:, None, None]
masks = masks.astype(np.uint8) # cast to uint8 for albumentations
# create bboxes from masks (pascal format)
num_objs = len(obj_ids)
bboxes = []
labels = []
for i in range(num_objs):
pos = np.where(masks[i])
xmin = np.min(pos[1])
xmax = np.max(pos[1])
ymin = np.min(pos[0])
ymax = np.max(pos[0])
bboxes.append([xmin, ymin, xmax, ymax])
labels.append(2 if mask[(ymax + ymin) // 2, (xmax + xmin) // 2] > 127 else 1)
# convert arrays for albumentations
bboxes = torch.as_tensor(bboxes, dtype=torch.int64)
labels = torch.as_tensor(labels, dtype=torch.int64)
masks = list(np.asarray(masks))
if self.transforms is not None:
# arrange transform data
data = {
"image": image,
"labels": labels,
"bboxes": bboxes,
"masks": masks,
}
# apply transform
augmented = self.transforms(**data)
# get augmented data
image = augmented["image"]
bboxes = augmented["bboxes"]
labels = augmented["labels"]
masks = augmented["masks"]
bboxes = torch.as_tensor(bboxes, dtype=torch.int64)
labels = torch.as_tensor(labels, dtype=torch.int64) # int64 required by torchvision maskrcnn
masks = torch.stack(masks) # stack masks, required by torchvision maskrcnn
area = (bboxes[:, 3] - bboxes[:, 1]) * (bboxes[:, 2] - bboxes[:, 0])
image_id = torch.tensor([idx])
iscrowd = torch.zeros((num_objs,), dtype=torch.int64) # assume all instances are not crowd
target = {
"boxes": bboxes,
"labels": labels,
"masks": masks,
"area": area,
"image_id": image_id,
"iscrowd": iscrowd,
}
return image, target

277
src/datamodule.py Normal file
View file

@ -0,0 +1,277 @@
import datasets
import torch
from lightning.pytorch import LightningDataModule
from lightning.pytorch.trainer.supporters import CombinedLoader
from torch.utils.data import DataLoader
from torchvision.datasets import ImageFolder
from torchvision.transforms import AugMix
from transformers import DetrFeatureExtractor
class DETRDataModule(LightningDataModule):
"""PyTorch Lightning data module for DETR."""
def __init__(
self,
num_workers: int = 8,
batch_size: int = 6,
prefetch_factor: int = 2,
model_name: str = "facebook/detr-resnet-50",
persistent_workers: bool = True,
):
"""Constructor.
Args:
num_workers (int, optional): Number of workers.
batch_size (int, optional): Batch size.
prefetch_factor (int, optional): Prefetch factor.
val_split (float, optional): Validation split.
model_name (str, optional): Model name.
"""
super().__init__()
# save params
self.num_workers = num_workers
self.batch_size = batch_size
self.prefetch_factor = prefetch_factor
self.persistent_workers = persistent_workers
# get feature extractor
self.feature_extractor = DetrFeatureExtractor.from_pretrained(model_name)
def prepare_data(self):
"""Download data and prepare for training."""
# load datasets
self.illumination = datasets.load_dataset("src/spheres_illumination.py", split="train")
self.render = datasets.load_dataset("src/spheres_synth.py", split="train")
self.real = datasets.load_dataset("src/spheres.py", split="train")
# split datasets
self.illumination = self.illumination.train_test_split(test_size=0.01)
self.render = self.render.train_test_split(test_size=0.01)
self.real = self.real.train_test_split(test_size=0.1)
# print some info
print(f"illumination: {self.illumination}")
print(f"render: {self.render}")
print(f"real: {self.real}")
# other datasets
self.test_ds = datasets.load_dataset("src/spheres_illumination.py", split="test")
# self.predict_ds = datasets.load_dataset("src/spheres.py", split="train").shuffle().select(range(16))
self.predict_ds = datasets.load_dataset("src/spheres_predict.py", split="train")
# define AugMix transform
self.mix = AugMix()
# useful mappings
self.labels = self.real["test"].features["objects"][0]["category_id"].names
self.id2label = {k: v for k, v in enumerate(self.labels)}
self.label2id = {v: k for k, v in enumerate(self.labels)}
def train_transform(self, batch):
"""Training transform.
Args:
batch (dict): Batch precollated by HuggingFace datasets.
Structure is similar to the following:
{
"image": list[PIL.Image],
"image_id": list[int],
"objects": [
{
"bbox": list[float, 4],
"category_id": int,
}
]
}
Returns:
dict: Augmented and processed batch.
Structure is similar to the following:
{
"pixel_values": TensorType["batch", "canal", "width", "height"],
"pixel_mask": TensorType["batch", 1200, 1200],
"labels": List[Dict[str, TensorType["batch", "num_boxes", "num_labels"]]],
}
"""
# extract images, ids and objects from batch
images = batch["image"]
ids = batch["image_id"]
objects = batch["objects"]
# apply AugMix transform
images_mixed = [self.mix(image) for image in images]
# build targets for feature extractor
targets = [
{
"image_id": id,
"annotations": object,
}
for id, object in zip(ids, objects)
]
# process images and targets with feature extractor for DETR
processed = self.feature_extractor(
images=images_mixed,
annotations=targets,
return_tensors="pt",
)
return processed
def val_transform(self, batch):
"""Validation transform.
Just like Training transform, but without AugMix.
"""
# extract images, ids and objects from batch
images = batch["image"]
ids = batch["image_id"]
objects = batch["objects"]
# build targets for feature extractor
targets = [
{
"image_id": id,
"annotations": object,
}
for id, object in zip(ids, objects)
]
processed = self.feature_extractor(
images=images,
annotations=targets,
return_tensors="pt",
)
return processed
def predict_transform(self, batch):
"""Prediction transform.
Just like val_transform, but with images.
"""
processed = self.val_transform(batch)
# add images to dict
processed["images"] = batch["image"]
return processed
def collate_fn(self, examples):
"""Collate function.
Convert list of dicts to dict of Tensors.
"""
return {
"pixel_values": torch.stack([data["pixel_values"] for data in examples]),
"pixel_mask": torch.stack([data["pixel_mask"] for data in examples]),
"labels": [data["labels"] for data in examples],
}
def collate_fn_predict(self, examples):
"""Collate function.
Convert list of dicts to dict of Tensors.
"""
return {
"pixel_values": torch.stack([data["pixel_values"] for data in examples]),
"pixel_mask": torch.stack([data["pixel_mask"] for data in examples]),
"labels": [data["labels"] for data in examples],
"images": [data["images"] for data in examples],
}
def train_dataloader(self):
"""Training dataloader."""
loaders = {
"illumination": DataLoader(
self.illumination["train"].with_transform(self.val_transform),
shuffle=True,
pin_memory=True,
persistent_workers=self.persistent_workers,
collate_fn=self.collate_fn,
batch_size=self.batch_size,
num_workers=self.num_workers,
prefetch_factor=self.prefetch_factor,
),
"render": DataLoader(
self.render["train"].with_transform(self.val_transform),
shuffle=True,
pin_memory=True,
persistent_workers=self.persistent_workers,
collate_fn=self.collate_fn,
batch_size=self.batch_size,
num_workers=self.num_workers,
prefetch_factor=self.prefetch_factor,
),
"real": DataLoader(
self.real["train"].with_transform(self.val_transform),
shuffle=True,
pin_memory=True,
persistent_workers=self.persistent_workers,
collate_fn=self.collate_fn,
batch_size=self.batch_size,
num_workers=self.num_workers,
prefetch_factor=self.prefetch_factor,
),
}
return CombinedLoader(loaders, mode="max_size_cycle")
def val_dataloader(self):
"""Validation dataloader."""
loaders = {
"illumination": DataLoader(
self.illumination["test"].with_transform(self.val_transform),
pin_memory=True,
persistent_workers=self.persistent_workers,
collate_fn=self.collate_fn,
batch_size=self.batch_size,
num_workers=self.num_workers,
prefetch_factor=self.prefetch_factor,
),
"render": DataLoader(
self.render["test"].with_transform(self.val_transform),
pin_memory=True,
persistent_workers=self.persistent_workers,
collate_fn=self.collate_fn,
batch_size=self.batch_size,
num_workers=self.num_workers,
prefetch_factor=self.prefetch_factor,
),
"real": DataLoader(
self.real["test"].with_transform(self.val_transform),
pin_memory=True,
persistent_workers=self.persistent_workers,
collate_fn=self.collate_fn,
batch_size=self.batch_size,
num_workers=self.num_workers,
prefetch_factor=self.prefetch_factor,
),
}
return CombinedLoader(loaders, mode="max_size_cycle")
def predict_dataloader(self):
"""Prediction dataloader."""
return DataLoader(
self.predict_ds.with_transform(self.predict_transform),
pin_memory=True,
persistent_workers=self.persistent_workers,
collate_fn=self.collate_fn_predict,
batch_size=self.batch_size,
num_workers=self.num_workers,
prefetch_factor=self.prefetch_factor,
)
if __name__ == "__main__":
# load data
dm = DETRDataModule()
dm.prepare_data()
ds = dm.train_dataloader()
for batch in ds:
print(batch)

File diff suppressed because one or more lines are too long

44
src/main.py Normal file
View file

@ -0,0 +1,44 @@
from lightning.pytorch.callbacks import (
ModelCheckpoint,
RichModelSummary,
RichProgressBar,
)
from lightning.pytorch.cli import LightningCLI
from datamodule import DETRDataModule
from module import DETR
class MyLightningCLI(LightningCLI):
"""Custom Lightning CLI to define default arguments."""
def add_arguments_to_parser(self, parser):
"""Add arguments to parser."""
parser.set_defaults(
{
"trainer.multiple_trainloader_mode": "max_size_cycle",
"trainer.max_steps": 5000,
"trainer.max_epochs": 1,
"trainer.accelerator": "gpu",
"trainer.devices": "[1]",
"trainer.strategy": "dp",
"trainer.log_every_n_steps": 25,
"trainer.val_check_interval": 200,
"trainer.num_sanity_val_steps": 10,
"trainer.benchmark": True,
"trainer.callbacks": [
RichProgressBar(),
RichModelSummary(max_depth=2),
ModelCheckpoint(mode="min", monitor="val_loss_real"),
ModelCheckpoint(save_on_train_epoch_end=True),
],
}
)
if __name__ == "__main__":
cli = MyLightningCLI(
model_class=DETR,
datamodule_class=DETRDataModule,
seed_everything_default=69420,
)

191
src/module.py Normal file
View file

@ -0,0 +1,191 @@
import torch
from lightning.pytorch import LightningModule
from PIL import ImageDraw
from transformers import (
DetrForObjectDetection,
get_cosine_with_hard_restarts_schedule_with_warmup,
)
class DETR(LightningModule):
"""PyTorch Lightning module for DETR."""
def __init__(
self,
lr: float = 1e-4,
lr_backbone: float = 1e-5,
weight_decay: float = 1e-4,
num_queries: int = 100,
warmup_steps: int = 0,
num_labels: int = 3,
prediction_threshold: float = 0.9,
):
"""Constructor.
Args:
lr (float, optional): Learning rate.
lr_backbone (float, optional): Learning rate for backbone.
weight_decay (float, optional): Weight decay.
num_queries (int, optional): Number of queries.
warmup_steps (int, optional): Number of warmup steps.
num_labels (int, optional): Number of labels.
prediction_threshold (float, optional): Prediction threshold.
"""
super().__init__()
# replace COCO classification head with custom head
self.net = DetrForObjectDetection.from_pretrained(
"facebook/detr-resnet-50",
ignore_mismatched_sizes=True,
num_queries=num_queries,
num_labels=num_labels,
)
# cf https://github.com/PyTorchLightning/pytorch-lightning/pull/1896
self.lr = lr
self.lr_backbone = lr_backbone
self.weight_decay = weight_decay
self.warmup_steps = warmup_steps
self.prediction_threshold = prediction_threshold
self.save_hyperparameters()
def forward(self, pixel_values, pixel_mask, **kwargs):
"""Forward pass."""
return self.net(
pixel_values=pixel_values,
pixel_mask=pixel_mask,
**kwargs,
)
def common_step(self, batchs, batch_idx):
"""Common step for training and validation.
Args:
batch (dict): Batch from dataloader (after collate_fn).
Structure is similar to the following:
{
"pixel_values": TensorType["batch", "canal", "width", "height"],
"pixel_mask": TensorType["batch", 1200, 1200],
"labels": List[Dict[str, TensorType["batch", "num_boxes", "num_labels"]]], # TODO: check this type
}
batch_idx (int): Batch index.
Returns:
tuple: Loss and loss dict.
"""
# intialize outputs
outputs = {k: {"loss": None, "loss_dict": None} for k in batchs.keys()}
# for each dataloader
for dataloader_name, batch in batchs.items():
# extract pixel_values, pixel_mask and labels from batch
pixel_values = batch["pixel_values"]
pixel_mask = batch["pixel_mask"]
labels = [{k: v.to(self.device) for k, v in t.items()} for t in batch["labels"]]
# forward pass
model_output = self(pixel_values=pixel_values, pixel_mask=pixel_mask, labels=labels)
# get loss
outputs[dataloader_name] = {
"loss": model_output.loss,
"loss_dict": model_output.loss_dict,
}
return outputs
def training_step(self, batch, batch_idx):
"""Training step."""
outputs = self.common_step(batch, batch_idx)
# logs metrics for each training_step and the average across the epoch
loss = 0
for dataloader_name, output in outputs.items():
loss += output["loss"]
self.log(f"train_loss_{dataloader_name}", output["loss"])
for k, v in output["loss_dict"].items():
self.log(f"train_loss_{k}_{dataloader_name}", v.item())
self.log("lr", self.optimizers().param_groups[0]["lr"])
self.log("lr_backbone", self.optimizers().param_groups[1]["lr"])
return loss
def validation_step(self, batch, batch_idx, dataloader_idx=None):
"""Validation step."""
outputs = self.common_step(batch, batch_idx)
# logs metrics for each validation_step and the average across the epoch
loss = 0
for dataloader_name, output in outputs.items():
loss += output["loss"]
self.log(f"val_loss_{dataloader_name}", output["loss"])
for k, v in output["loss_dict"].items():
self.log(f"val_loss_{k}_{dataloader_name}", v.item())
return loss
def predict_step(self, batch, batch_idx, dataloader_idx=None):
"""Predict step."""
# extract pixel_values and pixelmask from batch
pixel_values = batch["pixel_values"]
pixel_mask = batch["pixel_mask"]
images = batch["images"]
from transformers import AutoImageProcessor
image_processor = AutoImageProcessor.from_pretrained("facebook/detr-resnet-50")
# forward pass
outputs = self(pixel_values=pixel_values, pixel_mask=pixel_mask)
# postprocess outputs
sizes = torch.tensor([image.size[::-1] for image in images], device=self.device)
processed_outputs = image_processor.post_process_object_detection(
outputs, threshold=self.prediction_threshold, target_sizes=sizes
)
for i, image in enumerate(images):
# create ImageDraw object to draw on image
draw = ImageDraw.Draw(image)
# draw predicted bboxes
for bbox, label, score in zip(
processed_outputs[i]["boxes"].cpu().detach().numpy(),
processed_outputs[i]["labels"].cpu().detach().numpy(),
processed_outputs[i]["scores"].cpu().detach().numpy(),
):
if label == 0:
outline = "red"
elif label == 1:
outline = "blue"
else:
outline = "green"
draw.rectangle(bbox, outline=outline, width=5)
draw.text((bbox[0], bbox[1]), f"{score:0.4f}", fill="black", width=15)
# save image to image.png using PIL
image.save(f"image2_{batch_idx}_{i}.jpg")
def configure_optimizers(self):
"""Configure optimizers."""
param_dicts = [
{
"params": [p for n, p in self.named_parameters() if "backbone" not in n and p.requires_grad],
},
{
"params": [p for n, p in self.named_parameters() if "backbone" in n and p.requires_grad],
"lr": self.lr_backbone,
},
]
optimizer = torch.optim.AdamW(param_dicts, lr=self.lr, weight_decay=self.weight_decay)
scheduler = get_cosine_with_hard_restarts_schedule_with_warmup(
optimizer,
num_warmup_steps=self.warmup_steps,
num_training_steps=self.trainer.estimated_stepping_batches,
)
return [optimizer], [{"scheduler": scheduler, "interval": "step"}]

View file

@ -1 +0,0 @@
from .mrcnn import MRCNNModule

View file

@ -1,193 +0,0 @@
"""Mask R-CNN Pytorch Lightning Module for Object Detection and Segmentation."""
from typing import Any, Dict, List
import pytorch_lightning as pl
import torch
import torchvision
import wandb
from torchmetrics.detection.mean_ap import MeanAveragePrecision
from torchvision.models.detection.faster_rcnn import FastRCNNPredictor
from torchvision.models.detection.mask_rcnn import (
MaskRCNN,
MaskRCNN_ResNet50_FPN_Weights,
MaskRCNNPredictor,
)
Prediction = List[Dict[str, torch.Tensor]]
def get_model_instance_segmentation(n_classes: int) -> MaskRCNN:
"""Returns a Torchvision MaskRCNN model for finetunning.
Args:
n_classes (int): number of classes the model should predict, background included
Returns:
MaskRCNN: the model ready to be used
"""
# load an instance segmentation model pre-trained on COCO
model = torchvision.models.detection.maskrcnn_resnet50_fpn(
weights=MaskRCNN_ResNet50_FPN_Weights.DEFAULT,
box_detections_per_img=10, # cap numbers of detections, else memory explosion
)
# get number of input features for the classifier
in_features = model.roi_heads.box_predictor.cls_score.in_features
# replace the pre-trained head with a new one
model.roi_heads.box_predictor = FastRCNNPredictor(in_features, n_classes)
# now get the number of input features for the mask classifier
in_features_mask = model.roi_heads.mask_predictor.conv5_mask.in_channels
hidden_layer = 256
# and replace the mask predictor with a new one
model.roi_heads.mask_predictor = MaskRCNNPredictor(in_features_mask, hidden_layer, n_classes)
return model
class MRCNNModule(pl.LightningModule):
"""Mask R-CNN Pytorch Lightning Module, encapsulating common PyTorch functions."""
def __init__(self, n_classes: int) -> None:
"""Constructor, build model, save hyperparameters.
Args:
n_classes (int): number of classes the model should predict, background included
"""
super().__init__()
# Hyperparameters
self.n_classes = n_classes
# log hyperparameters
self.save_hyperparameters()
# Network
self.model = get_model_instance_segmentation(n_classes)
# onnx export
# self.example_input_array = torch.randn(1, 3, 1024, 1024, requires_grad=True).half()
# torchmetrics
self.metric_bbox = MeanAveragePrecision(iou_type="bbox")
self.metric_segm = MeanAveragePrecision(iou_type="segm")
# def forward(self, imgs: torch.Tensor) -> Prediction: # type: ignore
# """Make a forward pass (prediction), usefull for onnx export.
# Args:
# imgs (torch.Tensor): the images whose prediction we wish to make
# Returns:
# torch.Tensor: the predictions
# """
# self.model.eval()
# pred: Prediction = self.model(imgs)
# return pred
def training_step(self, batch: torch.Tensor, batch_idx: int) -> float: # type: ignore
"""PyTorch training step.
Args:
batch (torch.Tensor): the batch to train the model on
batch_idx (int): the batch index number
Returns:
float: the training loss of this step
"""
# unpack batch
images, targets = batch
# compute loss
loss_dict: dict[str, float] = self.model(images, targets)
loss_dict = {f"train/{key}": val for key, val in loss_dict.items()}
loss = sum(loss_dict.values())
loss_dict["train/loss"] = loss
# log everything
self.log_dict(loss_dict)
return loss
def on_validation_epoch_start(self) -> None:
"""Reset TorchMetrics."""
self.metric_bbox.reset()
self.metric_segm.reset()
def validation_step(self, batch: torch.Tensor, batch_idx: int) -> Prediction: # type: ignore
"""PyTorch validation step.
Args:
batch (torch.Tensor): the batch to evaluate the model on
batch_idx (int): the batch index number
Returns:
torch.Tensor: the predictions
"""
# unpack batch
images, targets = batch
# make prediction
preds: Prediction = self.model(images)
# update TorchMetrics from predictions
for pred, target in zip(preds, targets):
pred["masks"] = pred["masks"].squeeze(1).int().bool()
target["masks"] = target["masks"].squeeze(1).int().bool()
self.metric_bbox.update(preds, targets)
self.metric_segm.update(preds, targets)
return preds
def validation_epoch_end(self, outputs: List[Prediction]) -> None: # type: ignore
"""Compute TorchMetrics.
Args:
outputs (List[Prediction]): list of predictions from validation steps
"""
# compute metrics
metric_dict_bbox = self.metric_bbox.compute()
metric_dict_segm = self.metric_segm.compute()
metric_dict_sum = {
f"valid/sum/{k}": metric_dict_bbox.get(k, 0) + metric_dict_segm.get(k, 0)
for k in set(metric_dict_bbox) & set(metric_dict_segm)
}
# change metrics keys
metric_dict_bbox = {f"valid/bbox/{key}": val for key, val in metric_dict_bbox.items()}
metric_dict_segm = {f"valid/segm/{key}": val for key, val in metric_dict_segm.items()}
# log metrics
self.log_dict(metric_dict_bbox)
self.log_dict(metric_dict_segm)
self.log_dict(metric_dict_sum)
def configure_optimizers(self) -> Dict[str, Any]:
"""PyTorch optimizers and Schedulers.
Returns:
Dict[str, Any]: dictionnary for PyTorch Lightning optimizer/scheduler configuration
"""
optimizer = torch.optim.Adam(
self.parameters(),
lr=wandb.config.LEARNING_RATE,
# momentum=wandb.config.MOMENTUM,
# weight_decay=wandb.config.WEIGHT_DECAY,
)
# scheduler = LinearWarmupCosineAnnealingLR(
# optimizer,
# warmup_epochs=1,
# max_epochs=30,
# )
return {
"optimizer": optimizer,
# "lr_scheduler": {
# "scheduler": scheduler,
# "interval": "step",
# "frequency": 10,
# "monitor": "bbox/map",
# },
}

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

242
src/spheres.py Normal file
View file

@ -0,0 +1,242 @@
"""Dataset class AI or NOT HuggingFace competition."""
import json
import pathlib
import cv2
import datasets
import numpy as np
prefix = "/data/local-files/?d=spheres/"
dataset_path = pathlib.Path("./dataset3/spheres/")
annotation_path = pathlib.Path("./annotations2.json")
_VERSION = "1.0.0"
_DESCRIPTION = ""
_HOMEPAGE = ""
_LICENSE = ""
_NAMES = [
# "White",
# "Black",
# "Grey",
# "Red",
# "Chrome",
"Matte",
"Shiny",
"Chrome",
]
class spheres(datasets.GeneratorBasedBuilder):
"""spheres image dataset."""
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
version=_VERSION,
homepage=_HOMEPAGE,
license=_LICENSE,
features=datasets.Features(
{
"image_id": datasets.Value("int64"),
"image": datasets.Image(),
"width": datasets.Value("int32"),
"height": datasets.Value("int32"),
"objects": [
{
"category_id": datasets.ClassLabel(names=_NAMES),
"image_id": datasets.Value("int64"),
"id": datasets.Value("string"),
"area": datasets.Value("float32"),
"bbox": datasets.Sequence(datasets.Value("float32"), length=4),
"iscrowd": datasets.Value("bool"),
}
],
}
),
)
def _split_generators(self, dl_manager):
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"dataset_path": dataset_path,
"annotation_path": annotation_path,
},
),
]
def _generate_examples(self, dataset_path: pathlib.Path, annotation_path: pathlib.Path):
"""Generate images and labels for splits."""
with open(annotation_path, "r") as f:
tasks = json.load(f)
index = 0
for task in tasks:
image_id = task["id"]
image_name = task["data"]["img"]
image_name = image_name[len(prefix) :]
image_name = pathlib.Path(image_name)
# skip shitty images
# if "Soulages" in str(image_name):
# continue
# check image_name exists
assert (dataset_path / image_name).is_file()
# create annotation groups
annotation_groups: dict[str, list[dict]] = {}
for annotation in task["annotations"][0]["result"]:
id = annotation["id"]
if "parentID" in annotation:
parent_id = annotation["parentID"]
if parent_id not in annotation_groups:
annotation_groups[parent_id] = []
annotation_groups[parent_id].append(annotation)
else:
if id not in annotation_groups:
annotation_groups[id] = []
annotation_groups[id].append(annotation)
# check all annotations have same width and height
width = task["annotations"][0]["result"][0]["original_width"]
height = task["annotations"][0]["result"][0]["original_height"]
for annotation in task["annotations"][0]["result"]:
assert annotation["original_width"] == width
assert annotation["original_height"] == height
# check all childs of group have same label
labels = {}
for group_id, annotations in annotation_groups.items():
label = annotations[0]["value"]["keypointlabels"][0]
for annotation in annotations:
assert annotation["value"]["keypointlabels"][0] == label
if label == "White":
label = "Matte"
elif label == "Black":
label = "Shiny"
elif label == "Red":
label = "Shiny"
labels[group_id] = label
# compute bboxes
bboxes = {}
for group_id, annotations in annotation_groups.items():
# convert points to numpy array
points = np.array(
[
[
annotation["value"]["x"] / 100 * width,
annotation["value"]["y"] / 100 * height,
]
for annotation in annotations
],
dtype=np.float32,
)
# fit ellipse from points
ellipse = cv2.fitEllipse(points)
# extract ellipse parameters
x_C = ellipse[0][0]
y_C = ellipse[0][1]
a = ellipse[1][0] / 2
b = ellipse[1][1] / 2
theta = ellipse[2] * np.pi / 180
# sample ellipse points
t = np.linspace(0, 2 * np.pi, 100)
x = x_C + a * np.cos(t) * np.cos(theta) - b * np.sin(t) * np.sin(theta)
y = y_C + a * np.cos(t) * np.sin(theta) + b * np.sin(t) * np.cos(theta)
# get bounding box
xmin = np.min(x)
xmax = np.max(x)
ymin = np.min(y)
ymax = np.max(y)
w = xmax - xmin
h = ymax - ymin
# bboxe to coco format
# https://github.com/huggingface/transformers/blob/main/src/transformers/models/detr/image_processing_detr.py#L295
bboxes[group_id] = [xmin, ymin, w, h]
# compute areas
areas = {group_id: w * h for group_id, (_, _, w, h) in bboxes.items()}
# generate data
data = {
"image_id": image_id,
"image": str(dataset_path / image_name),
"width": width,
"height": height,
"objects": [
{
# "category_id": "White",
"category_id": labels[group_id],
"image_id": image_id,
"id": group_id,
"area": areas[group_id],
"bbox": bboxes[group_id],
"iscrowd": False,
}
for group_id in annotation_groups
],
}
yield index, data
index += 1
if __name__ == "__main__":
from PIL import ImageDraw
# load dataset
dataset = datasets.load_dataset("src/spheres.py", split="train")
print("a")
labels = dataset.features["objects"][0]["category_id"].names
id2label = {k: v for k, v in enumerate(labels)}
label2id = {v: k for k, v in enumerate(labels)}
print(f"labels: {labels}")
print(f"id2label: {id2label}")
print(f"label2id: {label2id}")
print()
idx = 0
while True:
image = dataset[idx]["image"]
if "DSC_4234" in image.filename:
break
idx += 1
if idx > 10000:
break
print(f"image path: {image.filename}")
print(f"data: {dataset[idx]}")
draw = ImageDraw.Draw(image)
for obj in dataset[idx]["objects"]:
bbox = (
obj["bbox"][0],
obj["bbox"][1],
obj["bbox"][0] + obj["bbox"][2],
obj["bbox"][1] + obj["bbox"][3],
)
draw.rectangle(bbox, outline="red", width=3)
draw.text(bbox[:2], text=id2label[obj["category_id"]], fill="black")
# save image
image.save("example.jpg")

175
src/spheres_illumination.py Normal file
View file

@ -0,0 +1,175 @@
"""Dataset class AI or NOT HuggingFace competition."""
import pathlib
import json
import datasets
dataset_path_train = pathlib.Path("/home/laurent/proj-long/dataset_illumination/")
dataset_path_test = pathlib.Path("/home/laurent/proj-long/dataset_illumination_test/")
_VERSION = "1.0.0"
_DESCRIPTION = ""
_HOMEPAGE = ""
_LICENSE = ""
_NAMES = [
"Matte",
"Shiny",
"Chrome",
]
class spheresSynth(datasets.GeneratorBasedBuilder):
"""spheres image dataset."""
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
version=_VERSION,
homepage=_HOMEPAGE,
license=_LICENSE,
features=datasets.Features(
{
"image_id": datasets.Value("int64"),
"image": datasets.Image(),
"width": datasets.Value("int32"),
"height": datasets.Value("int32"),
"objects": [
{
"category_id": datasets.ClassLabel(names=_NAMES),
"image_id": datasets.Value("int64"),
"id": datasets.Value("string"),
"area": datasets.Value("float32"),
"bbox": datasets.Sequence(datasets.Value("float32"), length=4),
"iscrowd": datasets.Value("bool"),
}
],
}
),
)
def _split_generators(self, dl_manager):
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"dataset_path": dataset_path_train,
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"dataset_path": dataset_path_test,
},
),
]
def _generate_examples(self, dataset_path: pathlib.Path):
"""Generate images and labels for splits."""
width = 1500
height = 1000
original_width = 6020
original_height = 4024
# create png iterator
object_index = 0
jpgs = dataset_path.rglob("*.jpg")
for index, jpg in enumerate(jpgs):
# filter out probe images
if "probes" in jpg.parts:
continue
# filter out thumbnails
if "thumb" in jpg.stem:
continue
# open corresponding csv file
json_file = jpg.parent / "meta.json"
# read json
with open(json_file, "r") as f:
meta = json.load(f)
gray = (
(
meta["gray"]["bounding_box"]["x"] / original_width * width,
meta["gray"]["bounding_box"]["y"] / original_height * height,
meta["gray"]["bounding_box"]["w"] / original_width * width,
meta["gray"]["bounding_box"]["h"] / original_height * height
),
"Matte"
)
chrome = (
(
meta["chrome"]["bounding_box"]["x"] / original_width * width,
meta["chrome"]["bounding_box"]["y"] / original_height * height,
meta["chrome"]["bounding_box"]["w"] / original_width * width,
meta["chrome"]["bounding_box"]["h"] / original_height * height
),
"Chrome"
)
# generate data
data = {
"image_id": index,
"image": str(jpg),
"width": width,
"height": height,
"objects": [
{
"category_id": category,
"image_id": index,
"id": (object_index := object_index + 1),
"area": bbox[2] * bbox[3],
"bbox": bbox,
"iscrowd": False,
}
for bbox, category in [gray, chrome]
],
}
yield index, data
if __name__ == "__main__":
from PIL import ImageDraw
# load dataset
dataset = datasets.load_dataset("src/spheres_illumination.py", split="train")
dataset = dataset.shuffle()
labels = dataset.features["objects"][0]["category_id"].names
id2label = {k: v for k, v in enumerate(labels)}
label2id = {v: k for k, v in enumerate(labels)}
print(f"labels: {labels}")
print(f"id2label: {id2label}")
print(f"label2id: {label2id}")
print()
for idx in range(10):
image = dataset[idx]["image"]
print(f"image path: {image.filename}")
print(f"data: {dataset[idx]}")
draw = ImageDraw.Draw(image)
for obj in dataset[idx]["objects"]:
bbox = (
obj["bbox"][0],
obj["bbox"][1],
obj["bbox"][0] + obj["bbox"][2],
obj["bbox"][1] + obj["bbox"][3],
)
draw.rectangle(bbox, outline="red", width=3)
draw.text(bbox[:2], text=id2label[obj["category_id"]], fill="black")
# save image
image.save(f"example_{idx}.jpg")

113
src/spheres_predict.py Normal file
View file

@ -0,0 +1,113 @@
"""Dataset class AI or NOT HuggingFace competition."""
import pathlib
import datasets
dataset_path = pathlib.Path("/home/laurent/proj-long/dataset_predict/")
_VERSION = "1.0.0"
_DESCRIPTION = ""
_HOMEPAGE = ""
_LICENSE = ""
_NAMES = [
"Matte",
"Shiny",
"Chrome",
]
class spheresSynth(datasets.GeneratorBasedBuilder):
"""spheres image dataset."""
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
version=_VERSION,
homepage=_HOMEPAGE,
license=_LICENSE,
features=datasets.Features(
{
"image_id": datasets.Value("int64"),
"image": datasets.Image(),
"objects": [
{
"category_id": datasets.ClassLabel(names=_NAMES),
"image_id": datasets.Value("int64"),
"id": datasets.Value("string"),
"area": datasets.Value("float32"),
"bbox": datasets.Sequence(datasets.Value("float32"), length=4),
"iscrowd": datasets.Value("bool"),
}
],
}
),
)
def _split_generators(self, dl_manager):
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"dataset_path": dataset_path,
},
)
]
def _generate_examples(self, dataset_path: pathlib.Path):
"""Generate images and labels for splits."""
# create png iterator
jpgs = dataset_path.rglob("*.jpg")
for index, jpg in enumerate(jpgs):
print(index, jpg, 2)
# generate data
data = {
"image_id": index,
"image": str(jpg),
"objects": [],
}
yield index, data
if __name__ == "__main__":
from PIL import ImageDraw
# load dataset
dataset = datasets.load_dataset("src/spheres_predict.py", split="train")
labels = dataset.features["objects"][0]["category_id"].names
id2label = {k: v for k, v in enumerate(labels)}
label2id = {v: k for k, v in enumerate(labels)}
print(f"labels: {labels}")
print(f"id2label: {id2label}")
print(f"label2id: {label2id}")
print()
for idx in range(10):
image = dataset[idx]["image"]
print(f"image path: {image.filename}")
print(f"data: {dataset[idx]}")
draw = ImageDraw.Draw(image)
for obj in dataset[idx]["objects"]:
bbox = (
obj["bbox"][0],
obj["bbox"][1],
obj["bbox"][0] + obj["bbox"][2],
obj["bbox"][1] + obj["bbox"][3],
)
draw.rectangle(bbox, outline="red", width=3)
draw.text(bbox[:2], text=id2label[obj["category_id"]], fill="black")
# save image
image.save(f"example_{idx}.jpg")

174
src/spheres_synth.py Normal file
View file

@ -0,0 +1,174 @@
"""Dataset class AI or NOT HuggingFace competition."""
import pathlib
import cv2
import datasets
import numpy as np
dataset_path = pathlib.Path("/home/laurent/proj-long/dataset_render/")
_VERSION = "1.0.0"
_DESCRIPTION = ""
_HOMEPAGE = ""
_LICENSE = ""
_NAMES = [
"Matte",
"Shiny",
"Chrome",
]
class spheresSynth(datasets.GeneratorBasedBuilder):
"""spheres image dataset."""
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
version=_VERSION,
homepage=_HOMEPAGE,
license=_LICENSE,
features=datasets.Features(
{
"image_id": datasets.Value("int64"),
"image": datasets.Image(),
"width": datasets.Value("int32"),
"height": datasets.Value("int32"),
"objects": [
{
"category_id": datasets.ClassLabel(names=_NAMES),
"image_id": datasets.Value("int64"),
"id": datasets.Value("string"),
"area": datasets.Value("float32"),
"bbox": datasets.Sequence(datasets.Value("float32"), length=4),
"iscrowd": datasets.Value("bool"),
}
],
}
),
)
def _split_generators(self, dl_manager):
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"dataset_path": dataset_path,
},
),
]
def _generate_examples(self, dataset_path: pathlib.Path):
"""Generate images and labels for splits."""
# create png iterator
width = 1200
height = 675
object_index = 0
pngs = dataset_path.glob("*.png")
for index, png in enumerate(pngs):
# open corresponding csv file
csv = dataset_path / (png.stem + ".csv")
# read csv lines
with open(csv, "r") as f:
lines = f.readlines()
lines = [line.strip().split(",") for line in lines]
lines = [
(
float(line[0]),
1 - float(line[1]),
float(line[2]),
1 - float(line[3]),
line[4].strip()
) for line in lines
]
bboxes = [
(
line[0] * width,
line[3] * height,
(line[2] - line[0]) * width,
(line[1] - line[3]) * height,
)
for line in lines
]
categories = []
for line in lines:
category = line[4]
if category == "White":
category = "Matte"
elif category == "Black":
category = "Shiny"
elif category == "Grey":
category = "Matte"
elif category == "Red":
category = "Shiny"
elif category == "Chrome":
category = "Chrome"
elif category == "Cyan":
category = "Shiny"
categories.append(category)
# generate data
data = {
"image_id": index,
"image": str(png),
"width": width,
"height": height,
"objects": [
{
"category_id": category,
"image_id": index,
"id": (object_index := object_index + 1),
"area": bbox[2] * bbox[3],
"bbox": bbox,
"iscrowd": False,
}
for bbox, category in zip(bboxes, categories)
],
}
yield index, data
if __name__ == "__main__":
from PIL import ImageDraw
# load dataset
dataset = datasets.load_dataset("src/spheres_synth.py", split="train")
labels = dataset.features["objects"][0]["category_id"].names
id2label = {k: v for k, v in enumerate(labels)}
label2id = {v: k for k, v in enumerate(labels)}
print(f"labels: {labels}")
print(f"id2label: {id2label}")
print(f"label2id: {label2id}")
print()
for idx in range(10):
image = dataset[idx]["image"]
# print(f"image path: {image.filename}")
# print(f"data: {dataset[idx]}")
draw = ImageDraw.Draw(image)
for obj in dataset[idx]["objects"]:
bbox = (
obj["bbox"][0],
obj["bbox"][1],
obj["bbox"][0] + obj["bbox"][2],
obj["bbox"][1] + obj["bbox"][3],
)
draw.rectangle(bbox, outline="red", width=3)
draw.text(bbox[:2], text=id2label[obj["category_id"]], fill="black")
# save image
image.save(f"example_{idx}.jpg")

View file

@ -1,52 +0,0 @@
from pathlib import Path
from threading import Thread
import albumentations as A
import numpy as np
import torchvision.transforms as T
from data.dataset import SyntheticDataset
from utils import RandomPaste
transform = A.Compose(
[
A.LongestMaxSize(max_size=1024),
A.Flip(),
RandomPaste(5, "/media/disk1/lfainsin/SPHERES/WHITE", "/dev/null"),
A.ToGray(p=0.01),
A.ISONoise(),
A.ImageCompression(),
],
)
dataset = SyntheticDataset(image_dir="/media/disk1/lfainsin/BACKGROUND/coco/", transform=transform)
transform = T.ToPILImage()
def render(i, image, mask):
image = transform(image)
mask = transform(mask)
path = f"/media/disk1/lfainsin/TRAIN_prerender/{i:06d}/"
Path(path).mkdir(parents=True, exist_ok=True)
image.save(f"{path}/image.jpg")
mask.save(f"{path}/MASK.PNG")
def renderlist(list_i, dataset):
for i in list_i:
image, mask = dataset[i]
render(i, image, mask)
sublists = np.array_split(range(len(dataset)), 16 * 5)
threads = []
for sublist in sublists:
t = Thread(target=renderlist, args=(sublist, dataset))
t.start()
threads.append(t)
# join all threads
for t in threads:
t.join()

View file

@ -1,83 +0,0 @@
"""Main script, to be launched to start the fine tuning of the neural network."""
import pytorch_lightning as pl
import wandb
from pytorch_lightning.callbacks import (
EarlyStopping,
LearningRateMonitor,
ModelCheckpoint,
RichModelSummary,
RichProgressBar,
)
from pytorch_lightning.loggers import WandbLogger
from data import Spheres
from modules import MRCNNModule
from utils.callback import TableLog
if __name__ == "__main__":
# setup wandb
logger = WandbLogger(
project="Mask R-CNN",
config="wandb.yaml",
save_dir="/tmp/",
log_model="all",
settings=wandb.Settings(
code_dir="./src/",
),
)
# seed random generators
pl.seed_everything(
seed=wandb.config.SEED,
workers=True,
)
# Create Network
module = MRCNNModule(
n_classes=2,
)
# load checkpoint
# module.load_from_checkpoint("/tmp/model.ckpt")
# log gradients and weights regularly
logger.watch(
model=module.model,
log="all",
)
# Create the dataloaders
datamodule = Spheres()
# Create the trainer
trainer = pl.Trainer(
max_epochs=wandb.config.EPOCHS,
accelerator=wandb.config.DEVICE,
benchmark=wandb.config.BENCHMARK,
deterministic=wandb.config.DETERMINISTIC,
precision=wandb.config.PRECISION,
logger=logger,
log_every_n_steps=5,
val_check_interval=250,
callbacks=[
EarlyStopping(monitor="valid/sum/map", mode="max", patience=10, min_delta=0.01),
ModelCheckpoint(monitor="valid/sum/map", mode="max"),
# ModelPruning("l1_unstructured", amount=0.5),
LearningRateMonitor(log_momentum=True),
# StochasticWeightAveraging(swa_lrs=1e-2),
RichModelSummary(max_depth=2),
RichProgressBar(),
TableLog(),
],
# profiler="advanced",
gradient_clip_val=1,
num_sanity_val_steps=3,
devices=[0],
)
# actually train the model
trainer.fit(model=module, datamodule=datamodule)
# stop wandb
wandb.run.finish() # type: ignore

View file

@ -1,2 +0,0 @@
from .callback import TableLog
from .paste import RandomPaste

View file

@ -1,136 +0,0 @@
import wandb
from pytorch_lightning.callbacks import Callback
columns = [
"image",
]
class_labels = {
1: "sphere",
2: "chrome",
10: "sphere_gt",
20: "chrome_gt",
}
class TableLog(Callback):
def on_train_batch_end(self, trainer, pl_module, outputs, batch, batch_idx):
if batch_idx == 0:
rows = []
# unpacking
images, targets = batch
for image, target in zip(
images,
targets,
):
rows.append(
[
wandb.Image(
image.cpu(),
masks={
"ground_truth": {
"mask_data": (target["masks"] * target["labels"][:, None, None])
.max(dim=0)
.values.mul(10)
.cpu()
.numpy(),
"class_labels": class_labels,
},
},
),
]
)
wandb.log(
{
"train/predictions": wandb.Table(
columns=columns,
data=rows,
)
}
)
def on_validation_epoch_start(self, trainer, pl_module):
self.rows = []
def on_validation_batch_end(self, trainer, pl_module, outputs, batch, batch_idx, dataloader_idx):
if batch_idx == 2:
# unpacking
images, targets = batch
for image, target, pred in zip(
images,
targets,
outputs,
):
box_data_gt = [
{
"position": {
"minX": int(target["boxes"][j][0]),
"minY": int(target["boxes"][j][1]),
"maxX": int(target["boxes"][j][2]),
"maxY": int(target["boxes"][j][3]),
},
"domain": "pixel",
"class_id": int(target["labels"][j] * 10),
"class_labels": class_labels,
}
for j in range(len(target["labels"]))
]
box_data = [
{
"position": {
"minX": int(pred["boxes"][j][0]),
"minY": int(pred["boxes"][j][1]),
"maxX": int(pred["boxes"][j][2]),
"maxY": int(pred["boxes"][j][3]),
},
"domain": "pixel",
"class_id": int(pred["labels"][j]),
"box_caption": f"{pred['scores'][j]:0.3f}",
"class_labels": class_labels,
}
for j in range(len(pred["labels"]))
]
self.rows.append(
[
wandb.Image(
image.cpu(),
masks={
"ground_truth": {
"mask_data": (target["masks"] * target["labels"][:, None, None])
.max(dim=0)
.values.mul(10)
.cpu()
.numpy(),
"class_labels": class_labels,
},
"predictions": {
"mask_data": (pred["masks"] * pred["labels"][:, None, None])
.max(dim=0)
.values.cpu()
.numpy(),
"class_labels": class_labels,
},
},
boxes={
"ground_truth": {"box_data": box_data_gt},
"predictions": {"box_data": box_data},
},
),
]
)
def on_validation_epoch_end(self, trainer, pl_module):
# log table
wandb.log(
{
"valid/predictions": wandb.Table(
columns=columns,
data=self.rows,
)
}
)

View file

@ -1,235 +0,0 @@
from __future__ import annotations
import random as rd
from dataclasses import dataclass
from pathlib import Path
from typing import List, Tuple
import albumentations as A
import numpy as np
import torchvision.transforms as T
from PIL import Image
class RandomPaste(A.DualTransform):
"""Paste an object on a background.
Args:
TODO
Targets:
image, mask
Image types:
uint8
"""
def __init__(
self,
nb,
sphere_image_dir,
chrome_sphere_image_dir,
scale_range=(0.05, 0.3),
always_apply=True,
p=1.0,
):
super().__init__(always_apply, p)
self.sphere_images = []
self.sphere_images.extend(list(Path(sphere_image_dir).glob("**/*.jpg")))
self.sphere_images.extend(list(Path(sphere_image_dir).glob("**/*.png")))
self.chrome_sphere_images = []
self.chrome_sphere_images.extend(list(Path(chrome_sphere_image_dir).glob("**/*.jpg")))
self.chrome_sphere_images.extend(list(Path(chrome_sphere_image_dir).glob("**/*.png")))
self.scale_range = scale_range
self.nb = nb
@property
def targets_as_params(self):
return ["image"]
def apply(self, img, augmentation_datas, **params):
# convert img to Image, needed for `paste` function
img = Image.fromarray(img)
# paste spheres
for augmentation in augmentation_datas:
paste_img_aug = T.functional.adjust_contrast(
augmentation.paste_img,
contrast_factor=augmentation.contrast,
)
paste_img_aug = T.functional.adjust_brightness(
paste_img_aug,
brightness_factor=augmentation.brightness,
)
paste_img_aug = T.functional.affine(
paste_img_aug,
scale=0.95,
translate=(0, 0),
angle=augmentation.angle,
shear=augmentation.shear,
interpolation=T.InterpolationMode.BICUBIC,
)
paste_img_aug = T.functional.resize(
paste_img_aug,
size=augmentation.shape,
interpolation=T.InterpolationMode.LANCZOS,
)
paste_mask_aug = T.functional.affine(
augmentation.paste_mask,
scale=0.95,
translate=(0, 0),
angle=augmentation.angle,
shear=augmentation.shear,
interpolation=T.InterpolationMode.BICUBIC,
)
paste_mask_aug = T.functional.resize(
paste_mask_aug,
size=augmentation.shape,
interpolation=T.InterpolationMode.LANCZOS,
)
img.paste(paste_img_aug, augmentation.position, paste_mask_aug)
return np.array(img.convert("RGB"))
def apply_to_mask(self, mask, augmentation_datas, **params):
# convert mask to Image, needed for `paste` function
mask = Image.fromarray(mask)
for augmentation in augmentation_datas:
paste_mask_aug = T.functional.affine(
augmentation.paste_mask,
scale=0.95,
translate=(0, 0),
angle=augmentation.angle,
shear=augmentation.shear,
interpolation=T.InterpolationMode.BICUBIC,
)
paste_mask_aug = T.functional.resize(
paste_mask_aug,
size=augmentation.shape,
interpolation=T.InterpolationMode.LANCZOS,
)
# binarize the mask -> {0, 1}
paste_mask_aug_bin = paste_mask_aug.point(lambda p: augmentation.value if p > 10 else 0)
mask.paste(paste_mask_aug, augmentation.position, paste_mask_aug_bin)
return np.array(mask.convert("L"))
def get_params_dependent_on_targets(self, params):
# init augmentation list
augmentation_datas: List[AugmentationData] = []
# load target image (w/ transparency)
target_img = params["image"]
target_shape = np.array(target_img.shape[:2], dtype=np.uint)
# generate augmentations
ite = 0
NB = rd.randint(1, self.nb)
while len(augmentation_datas) < NB:
if ite > 100:
break
else:
ite += 1
# choose a random sphere image and its corresponding mask
if rd.random() > 0.5 or len(self.chrome_sphere_images) == 0:
img_path = rd.choice(self.sphere_images)
value = len(augmentation_datas) + 1
else:
img_path = rd.choice(self.chrome_sphere_images)
value = 255 - len(augmentation_datas)
mask_path = img_path.parent.joinpath("MASK.PNG")
# load paste assets
paste_img = Image.open(img_path).convert("RGBA")
paste_shape = np.array(paste_img.size, dtype=np.uint)
paste_mask = Image.open(mask_path).convert("LA")
# compute minimum scaling to fit inside target
min_scale = np.min(target_shape / paste_shape)
# randomly scale image inside target
scale = rd.uniform(*self.scale_range) * min_scale
shape = np.array(paste_shape * scale, dtype=np.uint)
try:
augmentation_datas.append(
AugmentationData(
position=(
rd.randint(0, target_shape[1] - shape[1]),
rd.randint(0, target_shape[0] - shape[0]),
),
shear=(
rd.uniform(-2, 2),
rd.uniform(-2, 2),
),
shape=tuple(shape),
angle=rd.uniform(0, 360),
brightness=rd.uniform(0.8, 1.2),
contrast=rd.uniform(0.8, 1.2),
paste_img=paste_img,
paste_mask=paste_mask,
value=value,
target_shape=tuple(target_shape),
other_augmentations=augmentation_datas,
)
)
except ValueError:
continue
params.update(
{
"augmentation_datas": augmentation_datas,
}
)
return params
@dataclass
class AugmentationData:
"""Store data for pasting augmentation."""
position: Tuple[int, int]
shape: Tuple[int, int]
target_shape: Tuple[int, int]
angle: float
brightness: float
contrast: float
shear: Tuple[float, float]
paste_img: Image.Image
paste_mask: Image.Image
value: int
other_augmentations: List[AugmentationData]
def __post_init__(self) -> None:
# check for overlapping
if overlap(self.other_augmentations, self):
raise ValueError
def overlap(augmentations: List[AugmentationData], augmentation: AugmentationData) -> bool:
x1, y1 = augmentation.position
w1, h1 = augmentation.shape
for other_augmentation in augmentations:
x2, y2 = other_augmentation.position
w2, h2 = other_augmentation.shape
if x1 + w1 >= x2 and x1 <= x2 + w2 and y1 + h1 >= y2 and y1 <= y2 + h2:
return True
return False

View file

@ -1,44 +0,0 @@
DIR_TRAIN_IMG:
value: "/media/disk1/lfainsin/TRAIN_prerender/"
DIR_VALID_IMG:
value: "/media/disk1/lfainsin/TEST_tmp_mrcnn/"
# DIR_SPHERE:
# value: "/media/disk1/lfainsin/SPHERES/"
N_CHANNELS:
value: 3
N_CLASSES:
value: 1
AMP:
value: True
PIN_MEMORY:
value: True
BENCHMARK:
value: True
DETERMINISTIC:
value: False
PRECISION:
value: 32
SEED:
value: 69420
DEVICE:
value: gpu
WORKERS:
value: 16
EPOCHS:
value: 50
TRAIN_BATCH_SIZE:
value: 6
VALID_BATCH_SIZE:
value: 2
PREFETCH_FACTOR:
value: 2
LEARNING_RATE:
value: 0.001
WEIGHT_DECAY:
value: 0.0001
MOMENTUM:
value: 0.9