feat(WIP): switching to pytorch lightning

Former-commit-id: 0038dbca182717af8fc4bd846fd5be0e9fa70a9a [formerly eb5eb0717f8511bf49de8393bbdc66e727b930ff]
Former-commit-id: 540304228b146fe8e086bc4ccb770a13f84cbbcb
This commit is contained in:
Laurent Fainsin 2022-07-04 21:40:38 +02:00
parent d785a5c6be
commit 982dfe99d7
2 changed files with 202 additions and 243 deletions

View file

@ -1,16 +1,16 @@
import logging
import albumentations as A
import pytorch_lightning as pl
import torch
import yaml
from albumentations.pytorch import ToTensorV2
from pytorch_lightning.loggers import WandbLogger
from torch.utils.data import DataLoader
from tqdm import tqdm
import wandb
from src.utils.dataset import SphereDataset
from unet import UNet
from utils.dice import dice_coeff
from utils.paste import RandomPaste
class_labels = {
@ -22,7 +22,7 @@ if __name__ == "__main__":
logging.basicConfig(level=logging.INFO, format="%(levelname)s: %(message)s")
# setup wandb
wandb.init(
logger = WandbLogger(
project="U-Net",
config=dict(
DIR_TRAIN_IMG="/home/lilian/data_disk/lfainsin/train/",
@ -36,7 +36,7 @@ if __name__ == "__main__":
AMP=True,
PIN_MEMORY=True,
BENCHMARK=True,
DEVICE="cuda",
DEVICE="gpu",
WORKERS=8,
EPOCHS=5,
BATCH_SIZE=16,
@ -51,18 +51,17 @@ if __name__ == "__main__":
),
)
# create device
device = torch.device(wandb.config.DEVICE)
# enable cudnn benchmarking
torch.backends.cudnn.benchmark = wandb.config.BENCHMARK
# seed random generators
pl.seed_everything(69420, workers=True)
# 0. Create network
net = UNet(n_channels=wandb.config.N_CHANNELS, n_classes=wandb.config.N_CLASSES, features=wandb.config.FEATURES)
# log the number of parameters of the model
wandb.config.PARAMETERS = sum(p.numel() for p in net.parameters() if p.requires_grad)
# transfer network to device
net.to(device=device)
# log gradients and weights regularly
logger.watch(net, log="all")
# 1. Create transforms
tf_train = A.Compose(
@ -121,244 +120,38 @@ if __name__ == "__main__":
pin_memory=wandb.config.PIN_MEMORY,
)
# 4. Set up the optimizer, the loss, the learning rate scheduler and the loss scaling for amp
optimizer = torch.optim.RMSprop(
net.parameters(),
lr=wandb.config.LEARNING_RATE,
weight_decay=wandb.config.WEIGHT_DECAY,
momentum=wandb.config.MOMENTUM,
# 4. Create the trainer
trainer = pl.Trainer(
max_epochs=wandb.config.EPOCHS,
accelerator="gpu",
precision=16,
auto_scale_batch_size="binsearch",
benchmark=wandb.config.BENCHMARK,
val_check_interval=100,
)
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, "max", patience=2)
grad_scaler = torch.cuda.amp.GradScaler(enabled=wandb.config.AMP)
criterion = torch.nn.BCEWithLogitsLoss()
# save model.onxx
dummy_input = torch.randn(
1, wandb.config.N_CHANNELS, wandb.config.IMG_SIZE, wandb.config.IMG_SIZE, requires_grad=True
).to(device)
torch.onnx.export(net, dummy_input, "checkpoints/model-0.onnx")
artifact = wandb.Artifact("onnx", type="model")
artifact.add_file("checkpoints/model-0.onnx")
wandb.run.log_artifact(artifact)
# log gradients and weights four time per epoch
wandb.watch(net, criterion, log_freq=100)
# print the config
logging.info(f"wandb config:\n{yaml.dump(wandb.config.as_dict())}")
# wandb init log
wandb.log(
{
"train/learning_rate": optimizer.state_dict()["param_groups"][0]["lr"],
},
commit=False,
)
# # wandb init log
# wandb.log(
# {
# "train/learning_rate": optimizer.state_dict()["param_groups"][0]["lr"],
# },
# commit=False,
# )
try:
for epoch in range(1, wandb.config.EPOCHS + 1):
with tqdm(total=len(ds_train), desc=f"{epoch}/{wandb.config.EPOCHS}", unit="img") as pbar:
# Training round
for step, (images, true_masks) in enumerate(train_loader):
assert images.shape[1] == net.n_channels, (
f"Network has been defined with {net.n_channels} input channels, "
f"but loaded images have {images.shape[1]} channels. Please check that "
"the images are loaded correctly."
trainer.fit(
model=net,
train_dataloaders=train_loader,
val_dataloaders=val_loader,
test_dataloaders=test_loader,
accelerator=wandb.config.DEVICE,
)
# transfer images to device
images = images.to(device=device)
true_masks = true_masks.unsqueeze(1).to(device=device)
# forward
with torch.cuda.amp.autocast(enabled=wandb.config.AMP):
pred_masks = net(images)
train_loss = criterion(pred_masks, true_masks)
# backward
optimizer.zero_grad(set_to_none=True)
grad_scaler.scale(train_loss).backward()
grad_scaler.step(optimizer)
grad_scaler.update()
# compute metrics
pred_masks_bin = (torch.sigmoid(pred_masks) > 0.5).float()
accuracy = (true_masks == pred_masks_bin).float().mean()
dice = dice_coeff(pred_masks_bin, true_masks)
mae = torch.nn.functional.l1_loss(pred_masks_bin, true_masks)
# update tqdm progress bar
pbar.update(images.shape[0])
pbar.set_postfix(**{"loss": train_loss.item()})
# log metrics
wandb.log(
{
"epoch": epoch - 1 + step / len(train_loader),
"train/accuracy": accuracy,
"train/bce": train_loss,
"train/dice": dice,
"train/mae": mae,
}
)
if step and (step % 250 == 0 or step == len(train_loader)):
# Evaluation round
net.eval()
accuracy = 0
val_loss = 0
dice = 0
mae = 0
with tqdm(val_loader, total=len(ds_valid), desc="val.", unit="img", leave=False) as pbar2:
for images, masks_true in val_loader:
# transfer images to device
images = images.to(device=device)
masks_true = masks_true.unsqueeze(1).to(device=device)
# forward
with torch.inference_mode():
masks_pred = net(images)
# compute metrics
val_loss += criterion(masks_pred, masks_true)
masks_pred_bin = (torch.sigmoid(masks_pred) > 0.5).float()
mae += torch.nn.functional.l1_loss(masks_pred_bin, masks_true)
accuracy += (masks_true == masks_pred_bin).float().mean()
dice += dice_coeff(masks_pred_bin, masks_true)
# update progress bar
pbar2.update(images.shape[0])
accuracy /= len(val_loader)
val_loss /= len(val_loader)
dice /= len(val_loader)
mae /= len(val_loader)
# save the last validation batch to table
table = wandb.Table(columns=["ID", "image", "ground truth", "prediction"])
for i, (img, mask, pred, pred_bin) in enumerate(
zip(
images.cpu(),
masks_true.cpu(),
masks_pred.cpu(),
masks_pred_bin.cpu().squeeze(1).int().numpy(),
)
):
table.add_data(
i,
wandb.Image(img),
wandb.Image(mask),
wandb.Image(
pred,
masks={
"predictions": {
"mask_data": pred_bin,
"class_labels": class_labels,
},
},
),
)
# log validation metrics
wandb.log(
{
"val/predictions": table,
"train/learning_rate": optimizer.state_dict()["param_groups"][0]["lr"],
"val/accuracy": accuracy,
"val/bce": val_loss,
"val/dice": dice,
"val/mae": mae,
},
commit=False,
)
# update hyperparameters
net.train()
scheduler.step(dice)
# export model to onnx format when validation ends
dummy_input = torch.randn(1, 3, 512, 512, requires_grad=True).to(device)
torch.onnx.export(net, dummy_input, f"checkpoints/model-{epoch}-{step}.onnx")
artifact = wandb.Artifact("onnx", type="model")
artifact.add_file(f"checkpoints/model-{epoch}-{step}.onnx")
wandb.run.log_artifact(artifact)
# testing round
net.eval()
accuracy = 0
val_loss = 0
dice = 0
mae = 0
with tqdm(test_loader, total=len(ds_test), desc="test", unit="img", leave=False) as pbar3:
for images, masks_true in test_loader:
# transfer images to device
images = images.to(device=device)
masks_true = masks_true.unsqueeze(1).to(device=device)
# forward
with torch.inference_mode():
masks_pred = net(images)
# compute metrics
val_loss += criterion(masks_pred, masks_true)
masks_pred_bin = (torch.sigmoid(masks_pred) > 0.5).float()
mae += torch.nn.functional.l1_loss(masks_pred_bin, masks_true)
accuracy += (masks_true == masks_pred_bin).float().mean()
dice += dice_coeff(masks_pred_bin, masks_true)
# update progress bar
pbar3.update(images.shape[0])
accuracy /= len(test_loader)
val_loss /= len(test_loader)
dice /= len(test_loader)
mae /= len(test_loader)
# save the last validation batch to table
table = wandb.Table(columns=["ID", "image", "ground truth", "prediction"])
for i, (img, mask, pred, pred_bin) in enumerate(
zip(
images.cpu(),
masks_true.cpu(),
masks_pred.cpu(),
masks_pred_bin.cpu().squeeze(1).int().numpy(),
)
):
table.add_data(
i,
wandb.Image(img),
wandb.Image(mask),
wandb.Image(
pred,
masks={
"predictions": {
"mask_data": pred_bin,
"class_labels": class_labels,
},
},
),
)
# log validation metrics
wandb.log(
{
"test/predictions": table,
"test/accuracy": accuracy,
"test/bce": val_loss,
"test/dice": dice,
"test/mae": mae,
},
commit=False,
)
# stop wandb
wandb.run.finish()
except KeyboardInterrupt:
torch.save(net.state_dict(), "INTERRUPTED.pth")
raise
# sapin de noel
# stop wandb
wandb.run.finish()

View file

@ -1,9 +1,21 @@
""" Full assembly of the parts to form the complete network """
from xmlrpc.server import list_public_methods
import numpy as np
import pytorch_lightning as pl
import wandb
from utils.dice import dice_coeff
from .blocks import *
class_labels = {
1: "sphere",
}
class UNet(nn.Module):
class UNet(pl.LightningModule):
def __init__(self, n_channels, n_classes, features=[64, 128, 256, 512]):
super(UNet, self).__init__()
self.n_channels = n_channels
@ -26,7 +38,6 @@ class UNet(nn.Module):
self.outc = OutConv(features[0], n_classes)
def forward(self, x):
skips = []
x = self.inc(x)
@ -41,3 +52,158 @@ class UNet(nn.Module):
x = self.outc(x)
return x
@staticmethod
def save_to_table(images, masks_true, masks_pred, masks_pred_bin, log_key):
table = wandb.Table(columns=["ID", "image", "ground truth", "prediction"])
for i, (img, mask, pred, pred_bin) in enumerate(
zip(
images.cpu(),
masks_true.cpu(),
masks_pred.cpu(),
masks_pred_bin.cpu().squeeze(1).int().numpy(),
)
):
table.add_data(
i,
wandb.Image(img),
wandb.Image(mask),
wandb.Image(
pred,
masks={
"predictions": {
"mask_data": pred_bin,
"class_labels": class_labels,
},
},
),
)
wandb.log(
{
log_key: table,
}
)
def training_step(self, batch, batch_idx):
# unpacking
images, masks_true = batch
masks_true = masks_true.unsqueeze(1)
masks_pred = self(images)
masks_pred_bin = (torch.sigmoid(masks_pred) > 0.5).float()
# compute metrics
loss = F.cross_entropy(masks_pred, masks_true)
mae = torch.nn.functional.l1_loss(masks_pred_bin, masks_true)
accuracy = (masks_true == masks_pred_bin).float().mean()
dice = dice_coeff(masks_pred_bin, masks_true)
wandb.log(
{
"train/accuracy": accuracy,
"train/bce": loss,
"train/dice": dice,
"train/mae": mae,
}
)
return loss, dice, accuracy, mae
def validation_step(self, batch, batch_idx):
# unpacking
images, masks_true = batch
masks_true = masks_true.unsqueeze(1)
masks_pred = self(images)
masks_pred_bin = (torch.sigmoid(masks_pred) > 0.5).float()
# compute metrics
loss = F.cross_entropy(masks_pred, masks_true)
mae = torch.nn.functional.l1_loss(masks_pred_bin, masks_true)
accuracy = (masks_true == masks_pred_bin).float().mean()
dice = dice_coeff(masks_pred_bin, masks_true)
if batch_idx == 0:
self.save_to_table(images, masks_true, masks_pred, masks_pred_bin, "val/predictions")
return loss, dice, accuracy, mae
def validation_step_end(self, validation_outputs):
# unpacking
loss, dice, accuracy, mae = validation_outputs
optimizer = self.optimizers[0]
learning_rate = optimizer.state_dict()["param_groups"][0]["lr"]
wandb.log(
{
"train/learning_rate": learning_rate,
"val/accuracy": accuracy,
"val/bce": loss,
"val/dice": dice,
"val/mae": mae,
}
)
# export model to onnx
dummy_input = torch.randn(1, 3, 512, 512, requires_grad=True)
torch.onnx.export(self, dummy_input, f"checkpoints/model.onnx")
artifact = wandb.Artifact("onnx", type="model")
artifact.add_file(f"checkpoints/model.onnx")
wandb.run.log_artifact(artifact)
def test_step(self, batch, batch_idx):
# unpacking
images, masks_true = batch
masks_true = masks_true.unsqueeze(1)
masks_pred = self(images)
masks_pred_bin = (torch.sigmoid(masks_pred) > 0.5).float()
# compute metrics
loss = F.cross_entropy(masks_pred, masks_true)
mae = torch.nn.functional.l1_loss(masks_pred_bin, masks_true)
accuracy = (masks_true == masks_pred_bin).float().mean()
dice = dice_coeff(masks_pred_bin, masks_true)
if batch_idx == 0:
self.save_to_table(images, masks_true, masks_pred, masks_pred_bin, "test/predictions")
return loss, dice, accuracy, mae
def test_step_end(self, test_outputs):
# unpacking
list_loss, list_dice, list_accuracy, list_mae = test_outputs
# averaging
loss = np.mean(list_loss)
dice = np.mean(list_dice)
accuracy = np.mean(list_accuracy)
mae = np.mean(list_mae)
# get learning rate
optimizer = self.optimizers[0]
learning_rate = optimizer.state_dict()["param_groups"][0]["lr"]
wandb.log(
{
"train/learning_rate": learning_rate,
"val/accuracy": accuracy,
"val/bce": loss,
"val/dice": dice,
"val/mae": mae,
}
)
def configure_optimizers(self):
optimizer = torch.optim.RMSprop(
self.parameters(),
lr=wandb.config.LEARNING_RATE,
weight_decay=wandb.config.WEIGHT_DECAY,
momentum=wandb.config.MOMENTUM,
)
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(
optimizer,
"max",
patience=2,
)
return optimizer, scheduler