feat: prediction script

Former-commit-id: dcaba9f9fbeaec393cea168a16287c690c5733b0 [formerly c69d87581930858ca293326002588a0188431fe7]
Former-commit-id: 39fd4965182a2c4ae8ffac2f20c7dbaf4b82a61f
This commit is contained in:
Laurent Fainsin 2022-06-29 16:12:00 +02:00
parent c73b803a15
commit 9fe76d8c61
6 changed files with 65 additions and 86 deletions

4
.gitignore vendored
View file

@ -1,8 +1,6 @@
.venv/
.mypy_cache/
__pycache__/
checkpoints/
wandb/
INTERRUPTED.pth
*.pth

22
.vscode/launch.json vendored Normal file
View file

@ -0,0 +1,22 @@
{
// Use IntelliSense to learn about possible attributes.
// Hover to view descriptions of existing attributes.
// For more information, visit: https://go.microsoft.com/fwlink/?linkid=830387
"version": "0.2.0",
"configurations": [
{
"name": "Python: Current File",
"type": "python",
"request": "launch",
"program": "${file}",
"console": "integratedTerminal",
"args": [
"--input",
"SM.png",
"--output",
"test.png",
],
"justMyCode": true
}
]
}

1
SM.png.REMOVED.git-id Normal file
View file

@ -0,0 +1 @@
c6d08aa612451072cfe32a3ee086d08342ed9dd9

View file

@ -1,16 +1,13 @@
import argparse
import logging
import os
import albumentations as A
import numpy as np
import torch
import torch.nn.functional as F
from albumentations.pytorch import ToTensorV2
from PIL import Image
from torchvision import transforms
from src.utils.dataset import BasicDataset
from unet import UNet
from utils.utils import plot_img_and_mask
def get_args():
@ -20,7 +17,7 @@ def get_args():
parser.add_argument(
"--model",
"-m",
default="MODEL.pth",
default="model.pth",
metavar="FILE",
help="Specify the file in which the model is stored",
)
@ -28,7 +25,6 @@ def get_args():
"--input",
"-i",
metavar="INPUT",
nargs="+",
help="Filenames of input images",
required=True,
)
@ -36,108 +32,62 @@ def get_args():
"--output",
"-o",
metavar="OUTPUT",
nargs="+",
help="Filenames of output images",
)
parser.add_argument(
"--viz",
"-v",
action="store_true",
help="Visualize the images as they are processed",
)
parser.add_argument(
"--no-save",
"-n",
action="store_true",
help="Do not save the output masks",
)
parser.add_argument(
"--mask-threshold",
"--threshold",
"-t",
type=float,
default=0.5,
help="Minimum probability value to consider a mask pixel white",
)
parser.add_argument(
"--scale",
"-s",
type=float,
default=0.5,
help="Scale factor for the input images",
)
return parser.parse_args()
def predict_img(net, full_img, device, scale_factor=1, out_threshold=0.5):
net.eval()
img = torch.from_numpy(BasicDataset.preprocess(full_img, scale_factor, is_mask=False))
def predict_img(net, img, device, threshold):
img = img.unsqueeze(0)
img = img.to(device=device, dtype=torch.float32)
net.eval()
with torch.inference_mode():
output = net(img)
preds = torch.sigmoid(output)[0]
full_mask = preds.cpu().squeeze()
probs = torch.sigmoid(output)[0]
tf = transforms.Compose(
[transforms.ToPILImage(), transforms.Resize((full_img.size[1], full_img.size[0])), transforms.ToTensor()]
)
full_mask = tf(probs.cpu()).squeeze()
if net.n_classes == 1:
return (full_mask > out_threshold).numpy()
else:
return F.one_hot(full_mask.argmax(dim=0), net.n_classes).permute(2, 0, 1).numpy()
def get_output_filenames(args):
def _generate_name(fn):
split = os.path.splitext(fn)
return f"{split[0]}_OUT{split[1]}"
return args.output or list(map(_generate_name, args.input))
def mask_to_image(mask: np.ndarray):
if mask.ndim == 2:
return Image.fromarray((mask * 255).astype(np.uint8))
elif mask.ndim == 3:
return Image.fromarray((np.argmax(mask, axis=0) * 255 / mask.shape[0]).astype(np.uint8))
return np.asarray(full_mask > threshold)
if __name__ == "__main__":
args = get_args()
in_files = args.input
out_files = get_output_filenames(args)
net = UNet(n_channels=3, n_classes=2)
net = UNet(n_channels=3, n_classes=1)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
logging.info(f"Loading model {args.model}")
logging.info(f"Using device {device}")
logging.info("Transfering model to device")
net.to(device=device)
logging.info(f"Loading model {args.model}")
net.load_state_dict(torch.load(args.model, map_location=device))
logging.info("Model loaded!")
logging.info(f"Loading image {args.input}")
img = Image.open(args.input).convert("RGB")
for i, filename in enumerate(in_files):
logging.info(f"Preprocessing image {args.input}")
tf = A.Compose(
[
A.ToFloat(max_value=255),
ToTensorV2(),
],
)
aug = tf(image=np.asarray(img))
img = aug["image"]
logging.info(f"\nPredicting image {filename} ...")
img = Image.open(filename)
logging.info(f"Predicting image {args.input}")
mask = predict_img(net=net, img=img, threshold=args.threshold, device=device)
mask = predict_img(
net=net, full_img=img, scale_factor=args.scale, out_threshold=args.mask_threshold, device=device
)
if not args.no_save:
out_filename = out_files[i]
result = mask_to_image(mask)
result.save(out_filename)
logging.info(f"Mask saved to {out_filename}")
if args.viz:
logging.info(f"Visualizing results for image {filename}, close to continue...")
plot_img_and_mask(img, mask)
logging.info(f"Saving prediction to {args.output}")
mask = Image.fromarray(mask)
mask.write(args.output)

View file

@ -105,6 +105,9 @@ def main():
net.load_state_dict(torch.load(args.load, map_location=device))
logging.info(f"Model loaded from {args.load}")
# save initial model.pth
torch.save(net.state_dict(), "model.pth")
# transfer network to device
net.to(device=device)
@ -146,7 +149,7 @@ def main():
criterion = nn.BCEWithLogitsLoss()
# setup wandb
wandb.init(
run = wandb.init(
project="U-Net-tmp",
config=dict(
epochs=args.epochs,
@ -156,6 +159,9 @@ def main():
),
)
wandb.watch(net, log_freq=100)
# artifact = wandb.Artifact("model", type="model")
# artifact.add_file("model.pth")
# run.log_artifact(artifact)
logging.info(
f"""Starting training:
@ -222,9 +228,11 @@ def main():
print(f"Train Loss: {train_loss:.3f}, Valid Score: {val_score:3f}")
# save weights when epoch end
Path(CHECKPOINT_DIR).mkdir(parents=True, exist_ok=True)
torch.save(net.state_dict(), str(CHECKPOINT_DIR / "checkpoint_epoch{}.pth".format(epoch)))
logging.info(f"Checkpoint {epoch} saved!")
# torch.save(net.state_dict(), "model.pth")
# run.log_artifact(artifact)
logging.info(f"model saved!")
run.finish()
except KeyboardInterrupt:
torch.save(net.state_dict(), "INTERRUPTED.pth")

BIN
test.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.5 KiB