feat: changed DIR paths + weird optimization

Former-commit-id: c85c819a022a4cc9fffa88e833d1798b38d5a600 [formerly fb78d7be52badb87cc670bcb8bf0a83c5648d315]
Former-commit-id: 442152b8b84db736380cc17009f1bd4329bb6a22
This commit is contained in:
Laurent Fainsin 2022-08-23 15:27:23 +02:00
parent 0cb52febd7
commit c50235bb1e
5 changed files with 18 additions and 15 deletions

View file

@ -19,6 +19,6 @@ services:
container_name: wandb-local
hostname: wandb-local
volumes:
- /media/disk2/lfainsin/wandb-local/:/vol
- ./wandb-local/:/vol
ports:
- 8080:8080

View file

@ -25,9 +25,9 @@ class Spheres(pl.LightningDataModule):
# )
# dataset = SyntheticDataset(image_dir=wandb.config.DIR_TRAIN_IMG, transform=transform)
# dataset = Subset(dataset, list(range(0, len(dataset), len(dataset) // 10000 + 1)))
dataset = LabeledDataset2(image_dir="/home/lilian/data_disk/lfainsin/prerender/")
dataset = LabeledDataset2(image_dir="/media/disk1/lfainsin/TRAIN_prerender/")
dataset = Subset(dataset, list(range(len(dataset)))) # somhow this allows to better utilize the gpu
return DataLoader(
dataset,
@ -40,6 +40,7 @@ class Spheres(pl.LightningDataModule):
def val_dataloader(self):
dataset = LabeledDataset(image_dir=wandb.config.DIR_VALID_IMG)
dataset = Subset(dataset, list(range(len(dataset)))) # somhow this allows to better utilize the gpu
return DataLoader(
dataset,

View file

@ -81,18 +81,19 @@ class LabeledDataset(Dataset):
class LabeledDataset2(Dataset):
def __init__(self, image_dir):
self.images = list(Path(image_dir).glob("**/*.jpg"))
self.image_dir = Path(image_dir)
def __len__(self):
return len(self.images)
return len(list(self.image_dir.iterdir()))
def __getitem__(self, index):
path = self.image_dir / str(index)
# open and convert image
image = np.array(Image.open(self.images[index]).convert("RGB"), dtype=np.uint8)
image = np.array(Image.open(path / "image.jpg").convert("RGB"), dtype=np.uint8)
# open and convert mask
mask_path = self.images[index].parent.joinpath("MASK.PNG")
mask = np.array(Image.open(mask_path).convert("L"), dtype=np.uint8) // 255
mask = np.array(Image.open(path / "MASK.PNG").convert("L"), dtype=np.uint8) // 255
# convert image & mask to Tensor float in [0, 1]
post_process = A.Compose(

View file

@ -48,12 +48,13 @@ if __name__ == "__main__":
max_epochs=wandb.config.EPOCHS,
accelerator=wandb.config.DEVICE,
benchmark=wandb.config.BENCHMARK,
# profiler="simple",
precision=16,
logger=logger,
log_every_n_steps=1,
val_check_interval=100,
callbacks=[RichProgressBar(), ArtifactLog(), TableLog()],
# profiler="simple",
# num_sanity_val_steps=0,
)
# actually train the model

View file

@ -1,9 +1,9 @@
DIR_TRAIN_IMG:
value: "/home/lilian/data_disk/lfainsin/train/"
value: "/media/disk1/lfainsin/BACKGROUND/"
DIR_VALID_IMG:
value: "/home/lilian/data_disk/lfainsin/test_batched_fast/"
value: "/media/disk1/lfainsin/TEST_batched/"
DIR_SPHERE:
value: "/home/lilian/data_disk/lfainsin/spheres+real/"
value: "/media/disk1/lfainsin/SPHERES/"
FEATURES:
value: [8, 16, 32, 64]
@ -29,13 +29,13 @@ SPHERES:
value: 3
EPOCHS:
value: 20
value: 1
TRAIN_BATCH_SIZE:
value: 64 # 100
value: 128 # 100
VAL_BATCH_SIZE:
value: 8 # 10
PREFETCH_FACTOR:
value: 16
value: 2
LEARNING_RATE:
value: 1.0e-4