import torch import torch.nn.functional as F from tqdm import tqdm from dice_loss import dice_coeff def eval_net(net, loader, device, n_val): """Evaluation without the densecrf with the dice coefficient""" net.eval() tot = 0 for i, b in tqdm(enumerate(loader), desc='Validation round', unit='img'): imgs = b['image'] true_masks = b['mask'] imgs = imgs.to(device=device, dtype=torch.float32) true_masks = true_masks.to(device=device, dtype=torch.float32) mask_pred = net(imgs) for true_mask in true_masks: mask_pred = (mask_pred > 0.5).float() if net.n_classes > 1: tot += F.cross_entropy(mask_pred.unsqueeze(dim=0), true_mask.unsqueeze(dim=0)).item() else: tot += dice_coeff(mask_pred, true_mask.squeeze(dim=1)).item() return tot / n_val