from pathlib import Path import albumentations as A import numpy as np from albumentations.pytorch import ToTensorV2 from PIL import Image from torch.utils.data import Dataset class SyntheticDataset(Dataset): def __init__(self, image_dir, transform): self.images = list(Path(image_dir).glob("**/*.jpg")) self.transform = transform def __len__(self): return len(self.images) def __getitem__(self, index): # open and convert image image = np.array(Image.open(self.images[index]).convert("RGB"), dtype=np.uint8) # create empty mask of same size mask = np.zeros((image.shape[0], image.shape[1]), dtype=np.uint8) # augment image and mask augmentations = self.transform(image=image, mask=mask) image = augmentations["image"] mask = augmentations["mask"] # convert image & mask to Tensor float in [0, 1] post_process = A.Compose( [ A.ToFloat(max_value=255), ToTensorV2(), ], ) augmentations = post_process(image=image, mask=mask) image = augmentations["image"] mask = augmentations["mask"] # make sure image and mask are floats image = image.float() mask = mask.float() return image, mask class LabeledDataset(Dataset): def __init__(self, image_dir): self.images = list(Path(image_dir).glob("**/*.jpg")) def __len__(self): return len(self.images) def __getitem__(self, index): # open and convert image image = np.array(Image.open(self.images[index]).convert("RGB"), dtype=np.uint8) # open and convert mask mask_path = self.images[index].parent.joinpath("MASK.PNG") mask = np.array(Image.open(mask_path).convert("L"), dtype=np.uint8) / 255 # convert image & mask to Tensor float in [0, 1] post_process = A.Compose( [ # A.SmallestMaxSize(1024), A.ToFloat(max_value=255), ToTensorV2(), ], ) augmentations = post_process(image=image, mask=mask) image = augmentations["image"] mask = augmentations["mask"] return image, mask