import torch import torch.nn.functional as F from tqdm import tqdm from dice_loss import dice_coeff def eval_net(net, dataset, device, n_val): """Evaluation without the densecrf with the dice coefficient""" net.eval() tot = 0 for i, b in tqdm(enumerate(dataset), total=n_val, desc='Validation round', unit='img'): img = b[0] true_mask = b[1] img = torch.from_numpy(img).unsqueeze(0) true_mask = torch.from_numpy(true_mask).unsqueeze(0) img = img.to(device=device) true_mask = true_mask.to(device=device) mask_pred = net(img).squeeze(dim=0) mask_pred = (mask_pred > 0.5).float() if net.n_classes > 1: tot += F.cross_entropy(mask_pred.unsqueeze(dim=0), true_mask.unsqueeze(dim=0)).item() else: tot += dice_coeff(mask_pred, true_mask.squeeze(dim=1)).item() return tot / n_val