REVA-QCAV/eval.py
milesial 02e2314149 Migration to PyTorch 0.4, code cleanup
Former-commit-id: c981801ccc3b74047e94c76e67c4ff1f3097226c
2018-06-08 19:27:32 +02:00

26 lines
643 B
Python

import torch
import torch.nn.functional as F
from dice_loss import dice_coeff
def eval_net(net, dataset, gpu=False):
"""Evaluation without the densecrf with the dice coefficient"""
tot = 0
for i, b in enumerate(dataset):
img = b[0]
true_mask = b[1]
img = torch.from_numpy(img).unsqueeze(0)
true_mask = torch.from_numpy(true_mask).unsqueeze(0)
if gpu:
img = img.cuda()
true_mask = true_mask.cuda()
mask_pred = net(img)[0]
mask_pred = (F.sigmoid(mask_pred) > 0.5).float()
tot += dice_coeff(mask_pred, true_mask).item()
return tot / i