Find a file
2023-04-02 19:02:04 +02:00
.vscode style: autoformatting 2023-04-01 19:31:04 +02:00
src feat: switch from poetry to micromamba 2023-04-01 19:10:27 +02:00
.editorconfig feat: checkpoint wandb logging 2022-07-11 15:34:05 +02:00
.gitattributes feat: add .gitattributes 2022-09-02 16:09:18 +02:00
.gitignore fix: github .gitignore 2023-04-02 19:01:30 +02:00
env.yml fix: switch from pytorch_lightning to lightning 2023-04-02 19:02:04 +02:00
LICENSE feat: add LICENSE 2022-09-12 10:59:58 +02:00
pyproject.toml feat: switch from poetry to micromamba 2023-04-01 19:10:27 +02:00
README.md chore: update readme 2022-09-13 11:17:42 +02:00

sphereDetect

sphereDetect is a simple neural network, based on a Mask R-CNN, to detect spherical landmarks for image calibration.

Built with

Frameworks

Tools

Getting started (with docker and vscode)

Requirements

Installation

Clone the repository:

git clone git@git.inpt.fr:fainsil/pytorch-reva.git

Start VS Code:

vscode pytorch-reva

Install the Remote Development extension pack.
Modify variables UID and GID in .devcontainer/Dockerfile if necessary. Reopen the workspace in devcontainer mode.

Usage

Configure Weights & Biases (local) server at http://localhost:8080, and login:

wandb login --host http://localhost:8080

Press F5 to launch src/train.py in debug mode (with breakpoints, slower)
or press Ctrl+F5 to launch src/train.py in release mode.

Getting started (without docker)

Requirements

Installation

Clone the repository:

git clone git@git.inpt.fr:fainsil/pytorch-reva.git
cd pytorch-reva

Install the dependencies:

poetry install --with all

Usage

Activate python environment:

poetry shell

Configure Weights & Biases (local) server, and login:

wandb server start
wandb login --host http://localhost:8080

Start a training:

python src/train.py

License

Distributed under the MIT license.
See LICENSE for more information.

Contact

Laurent Fainsin [loʁɑ̃ fɛ̃zɛ̃]
<laurent@fainsin.bzh>