mirror of
https://github.com/Laurent2916/REVA-QCAV.git
synced 2024-11-08 14:39:00 +00:00
42 lines
1.1 KiB
Python
42 lines
1.1 KiB
Python
import torch
|
|
from utils import *
|
|
import torch.nn.functional as F
|
|
from PIL import Image
|
|
from unet_model import UNet
|
|
from torch.autograd import Variable
|
|
import matplotlib.pyplot as plt
|
|
from crf import dense_crf
|
|
|
|
|
|
def predict_img(net, full_img, gpu=False):
|
|
img = resize_and_crop(full_img)
|
|
|
|
left = get_square(img, 0)
|
|
right = get_square(img, 1)
|
|
|
|
right = normalize(right)
|
|
left = normalize(left)
|
|
|
|
right = np.transpose(right, axes=[2, 0, 1])
|
|
left = np.transpose(left, axes=[2, 0, 1])
|
|
|
|
X_l = torch.FloatTensor(left).unsqueeze(0)
|
|
X_r = torch.FloatTensor(right).unsqueeze(0)
|
|
|
|
if gpu:
|
|
X_l = Variable(X_l, volatile=True).cuda()
|
|
X_r = Variable(X_r, volatile=True).cuda()
|
|
else:
|
|
X_l = Variable(X_l, volatile=True)
|
|
X_r = Variable(X_r, volatile=True)
|
|
|
|
y_l = F.sigmoid(net(X_l))
|
|
y_r = F.sigmoid(net(X_r))
|
|
y_l = F.upsample_bilinear(y_l, scale_factor=2).data[0][0].cpu().numpy()
|
|
y_r = F.upsample_bilinear(y_r, scale_factor=2).data[0][0].cpu().numpy()
|
|
|
|
y = merge_masks(y_l, y_r, 1918)
|
|
yy = dense_crf(np.array(full_img).astype(np.uint8), y)
|
|
|
|
return yy > 0.5
|