mirror of
https://github.com/Laurent2916/REVA-QCAV.git
synced 2024-11-08 14:39:00 +00:00
a71e67690a
Former-commit-id: 8c5c75469afa61e8d3728959390b1354033be462
152 lines
4 KiB
Python
Executable file
152 lines
4 KiB
Python
Executable file
import argparse
|
|
import logging
|
|
import os
|
|
|
|
import numpy as np
|
|
import torch
|
|
import torch.nn.functional as F
|
|
from PIL import Image
|
|
from torchvision import transforms
|
|
|
|
from utils.data_loading import BasicDataset
|
|
from unet import UNet
|
|
from utils.utils import plot_img_and_mask
|
|
|
|
|
|
def predict_img(net, full_img, device, scale_factor=1, out_threshold=0.5):
|
|
net.eval()
|
|
img = torch.from_numpy(BasicDataset.preprocess(full_img, scale_factor, is_mask=False))
|
|
img = img.unsqueeze(0)
|
|
img = img.to(device=device, dtype=torch.float32)
|
|
|
|
with torch.no_grad():
|
|
output = net(img)
|
|
|
|
if net.n_classes > 1:
|
|
probs = F.softmax(output, dim=1)[0]
|
|
else:
|
|
probs = torch.sigmoid(output)[0]
|
|
|
|
tf = transforms.Compose(
|
|
[transforms.ToPILImage(), transforms.Resize((full_img.size[1], full_img.size[0])), transforms.ToTensor()]
|
|
)
|
|
|
|
full_mask = tf(probs.cpu()).squeeze()
|
|
|
|
if net.n_classes == 1:
|
|
return (full_mask > out_threshold).numpy()
|
|
else:
|
|
return F.one_hot(full_mask.argmax(dim=0), net.n_classes).permute(2, 0, 1).numpy()
|
|
|
|
|
|
def get_args():
|
|
parser = argparse.ArgumentParser(
|
|
description="Predict masks from input images",
|
|
)
|
|
parser.add_argument(
|
|
"--model",
|
|
"-m",
|
|
default="MODEL.pth",
|
|
metavar="FILE",
|
|
help="Specify the file in which the model is stored",
|
|
)
|
|
parser.add_argument(
|
|
"--input",
|
|
"-i",
|
|
metavar="INPUT",
|
|
nargs="+",
|
|
help="Filenames of input images",
|
|
required=True,
|
|
)
|
|
parser.add_argument(
|
|
"--output",
|
|
"-o",
|
|
metavar="OUTPUT",
|
|
nargs="+",
|
|
help="Filenames of output images",
|
|
)
|
|
parser.add_argument(
|
|
"--viz",
|
|
"-v",
|
|
action="store_true",
|
|
help="Visualize the images as they are processed",
|
|
)
|
|
parser.add_argument(
|
|
"--no-save",
|
|
"-n",
|
|
action="store_true",
|
|
help="Do not save the output masks",
|
|
)
|
|
parser.add_argument(
|
|
"--mask-threshold",
|
|
"-t",
|
|
type=float,
|
|
default=0.5,
|
|
help="Minimum probability value to consider a mask pixel white",
|
|
)
|
|
parser.add_argument(
|
|
"--scale",
|
|
"-s",
|
|
type=float,
|
|
default=0.5,
|
|
help="Scale factor for the input images",
|
|
)
|
|
parser.add_argument(
|
|
"--bilinear",
|
|
action="store_true",
|
|
default=False,
|
|
help="Use bilinear upsampling",
|
|
)
|
|
|
|
return parser.parse_args()
|
|
|
|
|
|
def get_output_filenames(args):
|
|
def _generate_name(fn):
|
|
split = os.path.splitext(fn)
|
|
return f"{split[0]}_OUT{split[1]}"
|
|
|
|
return args.output or list(map(_generate_name, args.input))
|
|
|
|
|
|
def mask_to_image(mask: np.ndarray):
|
|
if mask.ndim == 2:
|
|
return Image.fromarray((mask * 255).astype(np.uint8))
|
|
elif mask.ndim == 3:
|
|
return Image.fromarray((np.argmax(mask, axis=0) * 255 / mask.shape[0]).astype(np.uint8))
|
|
|
|
|
|
if __name__ == "__main__":
|
|
args = get_args()
|
|
in_files = args.input
|
|
out_files = get_output_filenames(args)
|
|
|
|
net = UNet(n_channels=3, n_classes=2, bilinear=args.bilinear)
|
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
logging.info(f"Loading model {args.model}")
|
|
logging.info(f"Using device {device}")
|
|
|
|
net.to(device=device)
|
|
net.load_state_dict(torch.load(args.model, map_location=device))
|
|
|
|
logging.info("Model loaded!")
|
|
|
|
for i, filename in enumerate(in_files):
|
|
logging.info(f"\nPredicting image {filename} ...")
|
|
img = Image.open(filename)
|
|
|
|
mask = predict_img(
|
|
net=net, full_img=img, scale_factor=args.scale, out_threshold=args.mask_threshold, device=device
|
|
)
|
|
|
|
if not args.no_save:
|
|
out_filename = out_files[i]
|
|
result = mask_to_image(mask)
|
|
result.save(out_filename)
|
|
logging.info(f"Mask saved to {out_filename}")
|
|
|
|
if args.viz:
|
|
logging.info(f"Visualizing results for image {filename}, close to continue...")
|
|
plot_img_and_mask(img, mask)
|