REVA-QCAV/src/predict.py
Laurent Fainsin d9f2dc2bfb feat: got positive loss values !
Former-commit-id: 84e2a715b843ecee2e12e4878fcee4a52bb0a4cb [formerly 1a5fc82bc099885853b7b4deff81b779dafd0168]
Former-commit-id: c82cd66d6c432555a126e506631dfa2fd756437e
2022-06-30 16:47:28 +02:00

85 lines
2 KiB
Python
Executable file

import argparse
import logging
import albumentations as A
import numpy as np
import torch
from albumentations.pytorch import ToTensorV2
from PIL import Image
from unet import UNet
def get_args():
parser = argparse.ArgumentParser(
description="Predict masks from input images",
)
parser.add_argument(
"--model",
"-m",
default="model.pth",
metavar="FILE",
help="Specify the file in which the model is stored",
)
parser.add_argument(
"--input",
"-i",
metavar="INPUT",
help="Filenames of input images",
required=True,
)
parser.add_argument(
"--output",
"-o",
metavar="OUTPUT",
help="Filenames of output images",
)
return parser.parse_args()
if __name__ == "__main__":
args = get_args()
logging.basicConfig(level=logging.INFO, format="%(levelname)s: %(message)s")
net = UNet(n_channels=3, n_classes=1)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
logging.info(f"Using device {device}")
logging.info("Transfering model to device")
net.to(device=device)
logging.info(f"Loading model {args.model}")
net.load_state_dict(torch.load(args.model, map_location=device))
logging.info(f"Loading image {args.input}")
img = Image.open(args.input).convert("RGB")
logging.info(f"Preprocessing image {args.input}")
tf = A.Compose(
[
A.ToFloat(max_value=255),
ToTensorV2(),
],
)
aug = tf(image=np.asarray(img))
img = aug["image"]
logging.info(f"Predicting image {args.input}")
img = img.unsqueeze(0).to(device=device, dtype=torch.float32)
net.eval()
with torch.inference_mode():
mask = net(img)
mask = torch.sigmoid(mask)[0]
mask = mask.cpu()
mask = mask.squeeze()
mask = mask > 0.5
mask = np.asarray(mask)
logging.info(f"Saving prediction to {args.output}")
mask = Image.fromarray(mask)
mask.save(args.output)