feat: experimental katex integration
This commit is contained in:
parent
98f691480a
commit
57f9229d42
|
@ -11,7 +11,7 @@ const sass = require("sass");
|
|||
const fs = require("fs");
|
||||
const markdownLib = markdownIt({
|
||||
html: true,
|
||||
breaks: true,
|
||||
breaks: false,
|
||||
linkify: true,
|
||||
}).use(markdownItAttrs);
|
||||
|
||||
|
|
84
src/_includes/test.njk
Normal file
84
src/_includes/test.njk
Normal file
|
@ -0,0 +1,84 @@
|
|||
<!DOCTYPE html>
|
||||
<html lang="en">
|
||||
|
||||
<head>
|
||||
<meta charset="UTF-8">
|
||||
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
||||
<link rel="shortcut icon" type="image/x-icon" href="{{ '/favicon.png' | url }}">
|
||||
<script>
|
||||
{% include "javascript/chaffle.min.js" %}
|
||||
</script>
|
||||
<title>{{ username }}</title>
|
||||
<style>
|
||||
{% include "css/style.css" %}
|
||||
{% include "css/anim.css" %}
|
||||
</style>
|
||||
|
||||
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/katex@0.15.2/dist/katex.min.css" integrity="sha384-MlJdn/WNKDGXveldHDdyRP1R4CTHr3FeuDNfhsLPYrq2t0UBkUdK2jyTnXPEK1NQ" crossorigin="anonymous">
|
||||
|
||||
<!-- The loading of KaTeX is deferred to speed up page rendering -->
|
||||
<script defer src="https://cdn.jsdelivr.net/npm/katex@0.15.2/dist/katex.min.js" integrity="sha384-VQ8d8WVFw0yHhCk5E8I86oOhv48xLpnDZx5T9GogA/Y84DcCKWXDmSDfn13bzFZY" crossorigin="anonymous"></script>
|
||||
|
||||
<!-- To automatically render math in text elements, include the auto-render extension: -->
|
||||
<script defer src="https://cdn.jsdelivr.net/npm/katex@0.15.2/dist/contrib/auto-render.min.js" integrity="sha384-+XBljXPPiv+OzfbB3cVmLHf4hdUFHlWNZN5spNQ7rmHTXpd7WvJum6fIACpNNfIR" crossorigin="anonymous" onload="renderMathInElement(document.body);"></script>
|
||||
|
||||
<script>
|
||||
document.addEventListener("DOMContentLoaded", function() {
|
||||
renderMathInElement(document.body, {
|
||||
// customised options
|
||||
// • auto-render specific keys, e.g.:
|
||||
delimiters: [
|
||||
{left: '$$', right: '$$', display: true},
|
||||
{left: '$', right: '$', display: false},
|
||||
{left: '\\(', right: '\\)', display: false},
|
||||
{left: '\\[', right: '\\]', display: true}
|
||||
],
|
||||
// • rendering keys, e.g.:
|
||||
throwOnError : false
|
||||
});
|
||||
});
|
||||
</script>
|
||||
|
||||
</head>
|
||||
|
||||
<body>
|
||||
<header role="banner">
|
||||
<div id="username">
|
||||
<span data-chaffle-onload="" data-chaffle="en">{{ username }}</span>
|
||||
<i class="blink">_</i>
|
||||
</div>
|
||||
{% block header %}{% endblock header %}
|
||||
</header>
|
||||
|
||||
<main role="main">
|
||||
{{ content | safe }}
|
||||
</main>
|
||||
|
||||
<script>
|
||||
var elm_mouseover = document.querySelectorAll('[data-chaffle]');
|
||||
var elm_onload = document.querySelectorAll('[data-chaffle-onLoad]');
|
||||
|
||||
Array
|
||||
.prototype
|
||||
.forEach
|
||||
.call(elm_mouseover, function (el) {
|
||||
var chaffle = new Chaffle(el)
|
||||
el.addEventListener('mouseover', function () {
|
||||
chaffle.init();
|
||||
});
|
||||
});
|
||||
|
||||
Array
|
||||
.prototype
|
||||
.forEach
|
||||
.call(elm_onload, function (el) {
|
||||
var chaffle = new Chaffle(el)
|
||||
chaffle.init();
|
||||
setInterval(function () {
|
||||
chaffle.init();
|
||||
}, 10000)
|
||||
});
|
||||
</script>
|
||||
</body>
|
||||
|
||||
</html>
|
25
src/test/index.md
Normal file
25
src/test/index.md
Normal file
|
@ -0,0 +1,25 @@
|
|||
---
|
||||
layout: test.njk
|
||||
---
|
||||
|
||||
# Analyse des EDP et méthode des éléments finis
|
||||
|
||||
> **_Exemple_**
|
||||
> $$
|
||||
> (P):
|
||||
> \left\lbrace
|
||||
> \begin{array}{l}
|
||||
> u'(x) + c(x) + u(x) = f(x) \quad & \forall x \in \Omega \\
|
||||
> u(x) = 0 & \forall x \in \Gamma
|
||||
> \end{array}
|
||||
> \right.
|
||||
> $$
|
||||
> avec $c$, $f$ régulière
|
||||
|
||||
> **_EDP 1A_** \
|
||||
> On cherche $u \in C^4$ une solution de $(P)$ dans des espace fonctionnels pour lequel $f$ est "strictement" régulier. \
|
||||
> Par différence finie: $u''(x_i) \simeq \dfrac{u_{i+1} - 2u_i + u_{i-1}}{h^2}$ sur une suite régulière de pas $h$.
|
||||
|
||||
> **_EDP 2A_** \
|
||||
> $c$, $f$ dans des espace fonctionnels $(L^\infty(\Omega), L^2(\Omega), ...)$.
|
||||
> On cherchera $u \in V$ tel que $\forall v \in V$ $\displaystyle\int_{-\infty}^\infty\hat f(\xi) e^{2 \pi i \xi x} d\xi$
|
Reference in a new issue