KPConv-PyTorch/train_NCLT.py

345 lines
9.9 KiB
Python
Raw Normal View History

2020-04-23 13:51:16 +00:00
#
#
# 0=================================0
# | Kernel Point Convolutions |
# 0=================================0
#
#
# ----------------------------------------------------------------------------------------------------------------------
#
# Callable script to start a training on NCLT dataset
#
# ----------------------------------------------------------------------------------------------------------------------
#
# Hugues THOMAS - 06/03/2020
#
# ----------------------------------------------------------------------------------------------------------------------
#
# Imports and global variables
# \**********************************/
#
# Common libs
import signal
import os
import numpy as np
import sys
import torch
# Dataset
from datasets.NCLT import *
from torch.utils.data import DataLoader
from utils.config import Config
from utils.trainer import ModelTrainer
from models.architectures import KPFCNN
# ----------------------------------------------------------------------------------------------------------------------
#
# Config Class
# \******************/
#
class NCLTConfig(Config):
"""
Override the parameters you want to modify for this dataset
"""
####################
# Dataset parameters
####################
# Dataset name
dataset = 'NCLT'
# Number of classes in the dataset (This value is overwritten by dataset class when Initializating dataset).
num_classes = None
# Type of task performed on this dataset (also overwritten)
dataset_task = ''
# Number of CPU threads for the input pipeline
input_threads = 10
#########################
# Architecture definition
#########################
# Define layers
architecture = ['simple',
'resnetb',
'resnetb_strided',
'resnetb',
'resnetb',
'resnetb_strided',
'resnetb',
'resnetb',
'resnetb',
'resnetb',
'resnetb_strided',
'resnetb',
'resnetb',
'resnetb',
'resnetb_strided',
'resnetb',
'resnetb',
'nearest_upsample',
'unary',
'nearest_upsample',
'unary',
'nearest_upsample',
'unary',
'nearest_upsample',
'unary']
###################
# KPConv parameters
###################
# Radius of the input sphere
in_radius = 6.0
val_radius = 51.0
n_frames = 1
max_in_points = 100000
max_val_points = 200000
# Number of batch
batch_num = 8
val_batch_num = 1
# Number of kernel points
num_kernel_points = 15
# Size of the first subsampling grid in meter
first_subsampling_dl = 0.06
# Radius of convolution in "number grid cell". (2.5 is the standard value)
conv_radius = 2.5
# Radius of deformable convolution in "number grid cell". Larger so that deformed kernel can spread out
deform_radius = 6.0
# Radius of the area of influence of each kernel point in "number grid cell". (1.0 is the standard value)
KP_extent = 1.5
# Behavior of convolutions in ('constant', 'linear', 'gaussian')
KP_influence = 'linear'
# Aggregation function of KPConv in ('closest', 'sum')
aggregation_mode = 'sum'
# Choice of input features
first_features_dim = 128
in_features_dim = 2
# Can the network learn modulations
modulated = False
# Batch normalization parameters
use_batch_norm = True
batch_norm_momentum = 0.02
# Offset loss
# 'permissive' only constrains offsets inside the deform radius (NOT implemented yet)
# 'fitting' helps deformed kernels to adapt to the geometry by penalizing distance to input points
offsets_loss = 'fitting'
offsets_decay = 0.01
#####################
# Training parameters
#####################
# Maximal number of epochs
max_epoch = 800
# Learning rate management
learning_rate = 1e-2
momentum = 0.98
lr_decays = {i: 0.1 ** (1 / 150) for i in range(1, max_epoch)}
grad_clip_norm = 100.0
# Number of steps per epochs
epoch_steps = 500
# Number of validation examples per epoch
validation_size = 200
# Number of epoch between each checkpoint
checkpoint_gap = 50
# Augmentations
augment_scale_anisotropic = True
augment_symmetries = [True, False, False]
augment_rotation = 'vertical'
augment_scale_min = 0.8
augment_scale_max = 1.2
augment_noise = 0.001
augment_color = 0.8
# Choose weights for class (used in segmentation loss). Empty list for no weights
# class proportion for R=10.0 and dl=0.08 (first is unlabeled)
# 19.1 48.9 0.5 1.1 5.6 3.6 0.7 0.6 0.9 193.2 17.7 127.4 6.7 132.3 68.4 283.8 7.0 78.5 3.3 0.8
#
#
# sqrt(Inverse of proportion * 100)
# class_w = [1.430, 14.142, 9.535, 4.226, 5.270, 11.952, 12.910, 10.541, 0.719,
# 2.377, 0.886, 3.863, 0.869, 1.209, 0.594, 3.780, 1.129, 5.505, 11.180]
# sqrt(Inverse of proportion * 100) capped (0.5 < X < 5)
# class_w = [1.430, 5.000, 5.000, 4.226, 5.000, 5.000, 5.000, 5.000, 0.719, 2.377,
# 0.886, 3.863, 0.869, 1.209, 0.594, 3.780, 1.129, 5.000, 5.000]
# Do we nee to save convergence
saving = True
saving_path = None
# ----------------------------------------------------------------------------------------------------------------------
#
# Main Call
# \***************/
#
if __name__ == '__main__':
#test_read_hits()
#frames_to_ply()
merge_day_pointclouds()
a = 1/0
############################
# Initialize the environment
############################
# Set which gpu is going to be used
GPU_ID = '2'
# Set GPU visible device
os.environ['CUDA_VISIBLE_DEVICES'] = GPU_ID
###############
# Previous chkp
###############
# Choose here if you want to start training from a previous snapshot (None for new training)
# previous_training_path = 'Log_2020-03-19_19-53-27'
previous_training_path = ''
# Choose index of checkpoint to start from. If None, uses the latest chkp
chkp_idx = None
if previous_training_path:
# Find all snapshot in the chosen training folder
chkp_path = os.path.join('results', previous_training_path, 'checkpoints')
chkps = [f for f in os.listdir(chkp_path) if f[:4] == 'chkp']
# Find which snapshot to restore
if chkp_idx is None:
chosen_chkp = 'current_chkp.tar'
else:
chosen_chkp = np.sort(chkps)[chkp_idx]
chosen_chkp = os.path.join('results', previous_training_path, 'checkpoints', chosen_chkp)
else:
chosen_chkp = None
##############
# Prepare Data
##############
print()
print('Data Preparation')
print('****************')
# Initialize configuration class
config = NCLTConfig()
if previous_training_path:
config.load(os.path.join('results', previous_training_path))
config.saving_path = None
# Get path from argument if given
if len(sys.argv) > 1:
config.saving_path = sys.argv[1]
# Initialize datasets
training_dataset = NCLTDataset(config, set='training',
balance_classes=True)
test_dataset = NCLTDataset(config, set='validation',
balance_classes=False)
# Initialize samplers
training_sampler = NCLTSampler(training_dataset)
test_sampler = NCLTSampler(test_dataset)
# Initialize the dataloader
training_loader = DataLoader(training_dataset,
batch_size=1,
sampler=training_sampler,
collate_fn=NCLTCollate,
num_workers=config.input_threads,
pin_memory=True)
test_loader = DataLoader(test_dataset,
batch_size=1,
sampler=test_sampler,
collate_fn=NCLTCollate,
num_workers=config.input_threads,
pin_memory=True)
# Calibrate max_in_point value
training_sampler.calib_max_in(config, training_loader, verbose=True)
test_sampler.calib_max_in(config, test_loader, verbose=True)
# Calibrate samplers
training_sampler.calibration(training_loader, verbose=True)
test_sampler.calibration(test_loader, verbose=True)
# debug_timing(training_dataset, training_loader)
# debug_timing(test_dataset, test_loader)
# debug_class_w(training_dataset, training_loader)
print('\nModel Preparation')
print('*****************')
# Define network model
t1 = time.time()
net = KPFCNN(config, training_dataset.label_values, training_dataset.ignored_labels)
debug = False
if debug:
print('\n*************************************\n')
print(net)
print('\n*************************************\n')
for param in net.parameters():
if param.requires_grad:
print(param.shape)
print('\n*************************************\n')
print("Model size %i" % sum(param.numel() for param in net.parameters() if param.requires_grad))
print('\n*************************************\n')
# Define a trainer class
trainer = ModelTrainer(net, config, chkp_path=chosen_chkp)
print('Done in {:.1f}s\n'.format(time.time() - t1))
print('\nStart training')
print('**************')
# Training
trainer.train(net, training_loader, test_loader, config)
print('Forcing exit now')
os.kill(os.getpid(), signal.SIGINT)