KPConv-PyTorch/datasets/SemanticKitti.py

1406 lines
52 KiB
Python
Raw Normal View History

2020-04-09 21:13:27 +00:00
#
#
# 0=================================0
# | Kernel Point Convolutions |
# 0=================================0
#
#
# ----------------------------------------------------------------------------------------------------------------------
#
# Class handling SemanticKitti dataset.
# Implements a Dataset, a Sampler, and a collate_fn
#
# ----------------------------------------------------------------------------------------------------------------------
#
# Hugues THOMAS - 11/06/2018
#
# ----------------------------------------------------------------------------------------------------------------------
#
# Imports and global variables
# \**********************************/
#
# Common libs
import time
import numpy as np
import pickle
import torch
import yaml
#from mayavi import mlab
from multiprocessing import Lock
# OS functions
from os import listdir
from os.path import exists, join, isdir
# Dataset parent class
from datasets.common import *
from torch.utils.data import Sampler, get_worker_info
from utils.mayavi_visu import *
from utils.metrics import fast_confusion
from datasets.common import grid_subsampling
from utils.config import bcolors
# ----------------------------------------------------------------------------------------------------------------------
#
# Dataset class definition
# \******************************/
class SemanticKittiDataset(PointCloudDataset):
"""Class to handle SemanticKitti dataset."""
def __init__(self, config, set='training', balance_classes=True):
PointCloudDataset.__init__(self, 'SemanticKitti')
##########################
# Parameters for the files
##########################
# Dataset folder
self.path = '../../Data/SemanticKitti'
# Type of task conducted on this dataset
self.dataset_task = 'slam_segmentation'
# Training or test set
self.set = set
# Get a list of sequences
if self.set == 'training':
self.sequences = ['{:02d}'.format(i) for i in range(11) if i != 8]
elif self.set == 'validation':
self.sequences = ['{:02d}'.format(i) for i in range(11) if i == 8]
elif self.set == 'test':
self.sequences = ['{:02d}'.format(i) for i in range(11, 22)]
else:
raise ValueError('Unknown set for SemanticKitti data: ', self.set)
# List all files in each sequence
self.frames = []
for seq in self.sequences:
velo_path = join(self.path, 'sequences', seq, 'velodyne')
frames = np.sort([vf[:-4] for vf in listdir(velo_path) if vf.endswith('.bin')])
self.frames.append(frames)
###########################
# Object classes parameters
###########################
# Read labels
if config.n_frames == 1:
config_file = join(self.path, 'semantic-kitti.yaml')
elif config.n_frames > 1:
config_file = join(self.path, 'semantic-kitti-all.yaml')
else:
raise ValueError('number of frames has to be >= 1')
with open(config_file, 'r') as stream:
doc = yaml.safe_load(stream)
all_labels = doc['labels']
learning_map_inv = doc['learning_map_inv']
learning_map = doc['learning_map']
self.learning_map = np.zeros((np.max([k for k in learning_map.keys()]) + 1), dtype=np.int32)
for k, v in learning_map.items():
self.learning_map[k] = v
self.learning_map_inv = np.zeros((np.max([k for k in learning_map_inv.keys()]) + 1), dtype=np.int32)
for k, v in learning_map_inv.items():
self.learning_map_inv[k] = v
# Dict from labels to names
self.label_to_names = {k: all_labels[v] for k, v in learning_map_inv.items()}
# Initiate a bunch of variables concerning class labels
self.init_labels()
# List of classes ignored during training (can be empty)
self.ignored_labels = np.sort([0])
##################
# Other parameters
##################
# Update number of class and data task in configuration
config.num_classes = self.num_classes
config.dataset_task = self.dataset_task
# Parameters from config
self.config = config
##################
# Load calibration
##################
# Init variables
self.calibrations = []
self.times = []
self.poses = []
self.all_inds = None
self.class_proportions = None
self.class_frames = []
self.val_confs = []
# Load everything
self.load_calib_poses()
############################
# Batch selection parameters
############################
# Initialize value for batch limit (max number of points per batch).
self.batch_limit = torch.tensor([1], dtype=torch.float32)
self.batch_limit.share_memory_()
# Initialize frame potentials
self.potentials = torch.from_numpy(np.random.rand(self.all_inds.shape[0]) * 0.1 + 0.1)
self.potentials.share_memory_()
# If true, the same amount of frames is picked per class
self.balance_classes = balance_classes
# Choose batch_num in_R and max_in_p depending on validation or training
if self.set == 'training':
self.batch_num = config.batch_num
self.max_in_p = config.max_in_points
self.in_R = config.in_radius
else:
self.batch_num = config.val_batch_num
self.max_in_p = config.max_val_points
self.in_R = config.val_radius
# shared epoch indices and classes (in case we want class balanced sampler)
if set == 'training':
N = int(np.ceil(config.epoch_steps * self.batch_num * 1.1))
else:
N = int(np.ceil(config.validation_size * self.batch_num * 1.1))
self.epoch_i = torch.from_numpy(np.zeros((1,), dtype=np.int64))
self.epoch_inds = torch.from_numpy(np.zeros((N,), dtype=np.int64))
self.epoch_labels = torch.from_numpy(np.zeros((N,), dtype=np.int32))
self.epoch_i.share_memory_()
self.epoch_inds.share_memory_()
self.epoch_labels.share_memory_()
self.worker_waiting = torch.tensor([0 for _ in range(config.input_threads)], dtype=torch.int32)
self.worker_waiting.share_memory_()
self.worker_lock = Lock()
return
def __len__(self):
"""
Return the length of data here
"""
return len(self.frames)
def __getitem__(self, batch_i):
"""
The main thread gives a list of indices to load a batch. Each worker is going to work in parallel to load a
different list of indices.
"""
t0 = time.time()
# Initiate concatanation lists
p_list = []
f_list = []
l_list = []
fi_list = []
p0_list = []
s_list = []
R_list = []
r_inds_list = []
r_mask_list = []
val_labels_list = []
batch_n = 0
while True:
with self.worker_lock:
# Get potential minimum
ind = int(self.epoch_inds[self.epoch_i])
wanted_label = int(self.epoch_labels[self.epoch_i])
# Update epoch indice
self.epoch_i += 1
s_ind, f_ind = self.all_inds[ind]
t1 = time.time()
#########################
# Merge n_frames together
#########################
# Initiate merged points
merged_points = np.zeros((0, 3), dtype=np.float32)
merged_labels = np.zeros((0,), dtype=np.int32)
merged_coords = np.zeros((0, 4), dtype=np.float32)
# In case of validation also keep original point and reproj indices
# Get center of the first frame in world coordinates
p_origin = np.zeros((1, 4))
p_origin[0, 3] = 1
pose0 = self.poses[s_ind][f_ind]
p0 = p_origin.dot(pose0.T)[:, :3]
p0 = np.squeeze(p0)
o_pts = None
o_labels = None
t2 = time.time()
num_merged = 0
f_inc = 0
while num_merged < self.config.n_frames and f_ind - f_inc >= 0:
# Select frame only if center has moved far away (more than X meter). Negative value to ignore
X = -1.0
pose = self.poses[s_ind][f_ind - f_inc]
diff = p_origin.dot(pose.T)[:, :3] - p_origin.dot(pose0.T)[:, :3]
if num_merged > 0 and np.linalg.norm(diff) < num_merged * X:
f_inc += 1
continue
# Path of points and labels
seq_path = join(self.path, 'sequences', self.sequences[s_ind])
velo_file = join(seq_path, 'velodyne', self.frames[s_ind][f_ind - f_inc] + '.bin')
if self.set == 'test':
label_file = None
else:
label_file = join(seq_path, 'labels', self.frames[s_ind][f_ind - f_inc] + '.label')
# Read points
frame_points = np.fromfile(velo_file, dtype=np.float32)
points = frame_points.reshape((-1, 4))
if self.set == 'test':
# Fake labels
sem_labels = np.zeros((frame_points.shape[0],), dtype=np.int32)
else:
# Read labels
frame_labels = np.fromfile(label_file, dtype=np.int32)
sem_labels = frame_labels & 0xFFFF # semantic label in lower half
sem_labels = self.learning_map[sem_labels]
# Apply pose
hpoints = np.hstack((points[:, :3], np.ones_like(points[:, :1])))
new_points = hpoints.dot(pose.T)
new_points[:, 3:] = points[:, 3:]
# In case of validation, keep the original points in memory
if self.set in ['validation', 'test'] and f_inc == 0:
o_pts = new_points[:, :3].astype(np.float32)
o_labels = sem_labels.astype(np.int32)
# In case radius smaller than 50m, chose new center on a point of the wanted class or not
if self.in_R < 50.0 and f_inc == 0:
if self.balance_classes:
wanted_ind = np.random.choice(np.where(sem_labels == wanted_label)[0])
else:
wanted_ind = np.random.choice(new_points.shape[0])
p0 = new_points[wanted_ind, :3]
# Eliminate points further than config.in_radius
mask = np.sum(np.square(new_points[:, :3] - p0), axis=1) < self.in_R ** 2
mask_inds = np.where(mask)[0].astype(np.int32)
# Shuffle points
rand_order = np.random.permutation(mask_inds)
new_points = new_points[rand_order, :]
sem_labels = sem_labels[rand_order]
# Place points in original frame reference to get coordinates
hpoints = np.hstack((new_points[:, :3], np.ones_like(new_points[:, :1])))
new_coords = hpoints.dot(pose0)
new_coords[:, 3:] = new_points[:, 3:]
# Increment merge count
merged_points = np.vstack((merged_points, new_points[:, :3]))
merged_labels = np.hstack((merged_labels, sem_labels))
merged_coords = np.vstack((merged_coords, new_coords))
num_merged += 1
f_inc += 1
t3 = time.time()
#########################
# Merge n_frames together
#########################
# Too see yielding speed with debug timings method, collapse points (reduce mapping time to nearly 0)
#merged_points = merged_points[:100, :]
#merged_labels = merged_labels[:100]
#merged_points *= 0.1
# Subsample merged frames
in_pts, in_fts, in_lbls = grid_subsampling(merged_points,
features=merged_coords,
labels=merged_labels,
sampleDl=self.config.first_subsampling_dl)
t4 = time.time()
# Number collected
n = in_pts.shape[0]
# Safe check
if n < 2:
continue
# Randomly drop some points (augmentation process and safety for GPU memory consumption)
if n > self.max_in_p:
input_inds = np.random.choice(n, size=self.max_in_p, replace=False)
in_pts = in_pts[input_inds, :]
in_fts = in_fts[input_inds, :]
in_lbls = in_lbls[input_inds]
n = input_inds.shape[0]
t5 = time.time()
# Before augmenting, compute reprojection inds (only for validation and test)
if self.set in ['validation', 'test']:
# get val_points that are in range
radiuses = np.sum(np.square(o_pts - p0), axis=1)
reproj_mask = radiuses < (0.99 * self.in_R) ** 2
# Project predictions on the frame points
search_tree = KDTree(in_pts, leaf_size=50)
proj_inds = search_tree.query(o_pts[reproj_mask, :], return_distance=False)
proj_inds = np.squeeze(proj_inds).astype(np.int32)
else:
proj_inds = np.zeros((0,))
reproj_mask = np.zeros((0,))
t6 = time.time()
# Data augmentation
in_pts, scale, R = self.augmentation_transform(in_pts)
t7 = time.time()
# Color augmentation
if np.random.rand() > self.config.augment_color:
in_fts[:, 3:] *= 0
# Stack batch
p_list += [in_pts]
f_list += [in_fts]
l_list += [np.squeeze(in_lbls)]
fi_list += [[s_ind, f_ind]]
p0_list += [p0]
s_list += [scale]
R_list += [R]
r_inds_list += [proj_inds]
r_mask_list += [reproj_mask]
val_labels_list += [o_labels]
t8 = time.time()
# Update batch size
batch_n += n
# In case batch is full, stop
if batch_n > int(self.batch_limit):
break
###################
# Concatenate batch
###################
stacked_points = np.concatenate(p_list, axis=0)
features = np.concatenate(f_list, axis=0)
labels = np.concatenate(l_list, axis=0)
frame_inds = np.array(fi_list, dtype=np.int32)
frame_centers = np.stack(p0_list, axis=0)
stack_lengths = np.array([pp.shape[0] for pp in p_list], dtype=np.int32)
scales = np.array(s_list, dtype=np.float32)
rots = np.stack(R_list, axis=0)
# Input features (Use reflectance, input height or all coordinates)
stacked_features = np.ones_like(stacked_points[:, :1], dtype=np.float32)
if self.config.in_features_dim == 1:
pass
elif self.config.in_features_dim == 2:
# Use original height coordinate
stacked_features = np.hstack((stacked_features, features[:, 2:3]))
elif self.config.in_features_dim == 3:
# Use height + reflectance
stacked_features = np.hstack((stacked_features, features[:, 2:]))
elif self.config.in_features_dim == 4:
# Use all coordinates
stacked_features = np.hstack((stacked_features, features[:3]))
elif self.config.in_features_dim == 5:
# Use all coordinates + reflectance
stacked_features = np.hstack((stacked_features, features))
else:
raise ValueError('Only accepted input dimensions are 1, 4 and 7 (without and with XYZ)')
t9 = time.time()
#######################
# Create network inputs
#######################
#
# Points, neighbors, pooling indices for each layers
#
# Get the whole input list
input_list = self.segmentation_inputs(stacked_points,
stacked_features,
labels.astype(np.int64),
stack_lengths)
t10 = time.time()
# Add scale and rotation for testing
input_list += [scales, rots, frame_inds, frame_centers, r_inds_list, r_mask_list, val_labels_list]
t11 = time.time()
# Display timings
debug = False
if debug:
print('\n************************\n')
print('Timings:')
print('Lock ...... {:.1f}ms'.format(1000 * (t1 - t0)))
print('Init ...... {:.1f}ms'.format(1000 * (t2 - t1)))
print('Load ...... {:.1f}ms'.format(1000 * (t3 - t2)))
print('subs ...... {:.1f}ms'.format(1000 * (t4 - t3)))
print('drop ...... {:.1f}ms'.format(1000 * (t5 - t4)))
print('reproj .... {:.1f}ms'.format(1000 * (t6 - t5)))
print('augment ... {:.1f}ms'.format(1000 * (t7 - t6)))
print('stack ..... {:.1f}ms'.format(1000 * (t8 - t7)))
print('concat .... {:.1f}ms'.format(1000 * (t9 - t8)))
print('input ..... {:.1f}ms'.format(1000 * (t10 - t9)))
print('stack ..... {:.1f}ms'.format(1000 * (t11 - t10)))
print('\n************************\n')
# Timings: (in test configuration)
# Lock ...... 0.1ms
# Init ...... 0.0ms
# Load ...... 40.0ms
# subs ...... 143.6ms
# drop ...... 4.6ms
# reproj .... 297.4ms
# augment ... 7.5ms
# stack ..... 0.0ms
# concat .... 1.4ms
# input ..... 816.0ms
# stack ..... 0.0ms
# TODO: Where can we gain time for the robot real time test?
# > Load: no disk read necessary + pose useless if we only use one frame for testing
# > Drop: We can drop even more points. Random choice could be faster without replace=False
# > reproj: No reprojection needed
# > Augment: See which data agment we want at test time
2020-04-10 19:38:24 +00:00
# > input: MAIN BOTTLENECK. We need to see if we can do faster, maybe with some parallelisation. neighbors
# and subsampling accelerated with lidar frame order
2020-04-09 21:13:27 +00:00
return [self.config.num_layers] + input_list
def load_calib_poses(self):
"""
load calib poses and times.
"""
###########
# Load data
###########
self.calibrations = []
self.times = []
self.poses = []
for seq in self.sequences:
seq_folder = join(self.path, 'sequences', seq)
# Read Calib
self.calibrations.append(self.parse_calibration(join(seq_folder, "calib.txt")))
# Read times
self.times.append(np.loadtxt(join(seq_folder, 'times.txt'), dtype=np.float32))
# Read poses
poses_f64 = self.parse_poses(join(seq_folder, 'poses.txt'), self.calibrations[-1])
self.poses.append([pose.astype(np.float32) for pose in poses_f64])
###################################
# Prepare the indices of all frames
###################################
seq_inds = np.hstack([np.ones(len(_), dtype=np.int32) * i for i, _ in enumerate(self.frames)])
frame_inds = np.hstack([np.arange(len(_), dtype=np.int32) for _ in self.frames])
self.all_inds = np.vstack((seq_inds, frame_inds)).T
################################################
# For each class list the frames containing them
################################################
if self.set in ['training', 'validation']:
class_frames_bool = np.zeros((0, self.num_classes), dtype=np.bool)
self.class_proportions = np.zeros((self.num_classes,), dtype=np.int32)
for s_ind, (seq, seq_frames) in enumerate(zip(self.sequences, self.frames)):
frame_mode = 'single'
if self.config.n_frames > 1:
frame_mode = 'multi'
seq_stat_file = join(self.path, 'sequences', seq, 'stats_{:s}.pkl'.format(frame_mode))
# Check if inputs have already been computed
if exists(seq_stat_file):
# Read pkl
with open(seq_stat_file, 'rb') as f:
seq_class_frames, seq_proportions = pickle.load(f)
else:
# Initiate dict
print('Preparing seq {:s} class frames. (Long but one time only)'.format(seq))
# Class frames as a boolean mask
seq_class_frames = np.zeros((len(seq_frames), self.num_classes), dtype=np.bool)
# Proportion of each class
seq_proportions = np.zeros((self.num_classes,), dtype=np.int32)
# Sequence path
seq_path = join(self.path, 'sequences', seq)
# Read all frames
for f_ind, frame_name in enumerate(seq_frames):
# Path of points and labels
label_file = join(seq_path, 'labels', frame_name + '.label')
# Read labels
frame_labels = np.fromfile(label_file, dtype=np.int32)
sem_labels = frame_labels & 0xFFFF # semantic label in lower half
sem_labels = self.learning_map[sem_labels]
# Get present labels and there frequency
unique, counts = np.unique(sem_labels, return_counts=True)
# Add this frame to the frame lists of all class present
frame_labels = np.array([self.label_to_idx[l] for l in unique], dtype=np.int32)
seq_class_frames[f_ind, frame_labels] = True
# Add proportions
seq_proportions[frame_labels] += counts
# Save pickle
with open(seq_stat_file, 'wb') as f:
pickle.dump([seq_class_frames, seq_proportions], f)
class_frames_bool = np.vstack((class_frames_bool, seq_class_frames))
self.class_proportions += seq_proportions
# Transform boolean indexing to int indices.
self.class_frames = []
for i, c in enumerate(self.label_values):
if c in self.ignored_labels:
self.class_frames.append(torch.zeros((0,), dtype=torch.int64))
else:
integer_inds = np.where(class_frames_bool[:, i])[0]
self.class_frames.append(torch.from_numpy(integer_inds.astype(np.int64)))
# Add variables for validation
if self.set == 'validation':
self.val_points = []
self.val_labels = []
self.val_confs = []
for s_ind, seq_frames in enumerate(self.frames):
self.val_confs.append(np.zeros((len(seq_frames), self.num_classes, self.num_classes)))
return
def parse_calibration(self, filename):
""" read calibration file with given filename
Returns
-------
dict
Calibration matrices as 4x4 numpy arrays.
"""
calib = {}
calib_file = open(filename)
for line in calib_file:
key, content = line.strip().split(":")
values = [float(v) for v in content.strip().split()]
pose = np.zeros((4, 4))
pose[0, 0:4] = values[0:4]
pose[1, 0:4] = values[4:8]
pose[2, 0:4] = values[8:12]
pose[3, 3] = 1.0
calib[key] = pose
calib_file.close()
return calib
def parse_poses(self, filename, calibration):
""" read poses file with per-scan poses from given filename
Returns
-------
list
list of poses as 4x4 numpy arrays.
"""
file = open(filename)
poses = []
Tr = calibration["Tr"]
Tr_inv = np.linalg.inv(Tr)
for line in file:
values = [float(v) for v in line.strip().split()]
pose = np.zeros((4, 4))
pose[0, 0:4] = values[0:4]
pose[1, 0:4] = values[4:8]
pose[2, 0:4] = values[8:12]
pose[3, 3] = 1.0
poses.append(np.matmul(Tr_inv, np.matmul(pose, Tr)))
return poses
class SemanticKittiSampler(Sampler):
"""Sampler for SemanticKitti"""
def __init__(self, dataset: SemanticKittiDataset):
Sampler.__init__(self, dataset)
# Dataset used by the sampler (no copy is made in memory)
self.dataset = dataset
# Number of step per epoch
if dataset.set == 'training':
self.N = dataset.config.epoch_steps
else:
self.N = dataset.config.validation_size
return
def __iter__(self):
"""
Yield next batch indices here. In this dataset, this is a dummy sampler that yield the index of batch element
(input sphere) in epoch instead of the list of point indices
"""
if self.dataset.balance_classes:
# Initiate current epoch ind
self.dataset.epoch_i *= 0
self.dataset.epoch_inds *= 0
self.dataset.epoch_labels *= 0
# Number of sphere centers taken per class in each cloud
num_centers = self.dataset.epoch_inds.shape[0]
# Generate a list of indices balancing classes and respecting potentials
gen_indices = []
gen_classes = []
for i, c in enumerate(self.dataset.label_values):
if c not in self.dataset.ignored_labels:
# Get the potentials of the frames containing this class
class_potentials = self.dataset.potentials[self.dataset.class_frames[i]]
# Get the indices to generate thanks to potentials
used_classes = self.dataset.num_classes - len(self.dataset.ignored_labels)
class_n = num_centers // used_classes + 1
if class_n < class_potentials.shape[0]:
_, class_indices = torch.topk(class_potentials, class_n, largest=False)
else:
class_indices = torch.randperm(class_potentials.shape[0])
class_indices = self.dataset.class_frames[i][class_indices]
# Add the indices to the generated ones
gen_indices.append(class_indices)
gen_classes.append(class_indices * 0 + c)
# Update potentials
self.dataset.potentials[class_indices] = np.ceil(self.dataset.potentials[class_indices])
self.dataset.potentials[class_indices] += np.random.rand(class_indices.shape[0]) * 0.1 + 0.1
# Stack the chosen indices of all classes
gen_indices = torch.cat(gen_indices, dim=0)
gen_classes = torch.cat(gen_classes, dim=0)
# Shuffle generated indices
rand_order = torch.randperm(gen_indices.shape[0])[:num_centers]
gen_indices = gen_indices[rand_order]
gen_classes = gen_classes[rand_order]
# Update potentials (Change the order for the next epoch)
self.dataset.potentials[gen_indices] = torch.ceil(self.dataset.potentials[gen_indices])
self.dataset.potentials[gen_indices] += torch.from_numpy(np.random.rand(gen_indices.shape[0]) * 0.1 + 0.1)
# Update epoch inds
self.dataset.epoch_inds += gen_indices
self.dataset.epoch_labels += gen_classes.type(torch.int32)
else:
# Initiate current epoch ind
self.dataset.epoch_i *= 0
self.dataset.epoch_inds *= 0
self.dataset.epoch_labels *= 0
# Number of sphere centers taken per class in each cloud
num_centers = self.dataset.epoch_inds.shape[0]
# Get the list of indices to generate thanks to potentials
if num_centers < self.dataset.potentials.shape[0]:
_, gen_indices = torch.topk(self.dataset.potentials, num_centers, largest=False, sorted=True)
else:
gen_indices = torch.randperm(self.dataset.potentials.shape[0])
# Update potentials (Change the order for the next epoch)
self.dataset.potentials[gen_indices] = torch.ceil(self.dataset.potentials[gen_indices])
self.dataset.potentials[gen_indices] += torch.from_numpy(np.random.rand(gen_indices.shape[0]) * 0.1 + 0.1)
# Update epoch inds
self.dataset.epoch_inds += gen_indices
# Generator loop
for i in range(self.N):
yield i
def __len__(self):
"""
The number of yielded samples is variable
"""
return self.N
def calib_max_in(self, config, dataloader, untouched_ratio=0.8, verbose=True):
"""
Method performing batch and neighbors calibration.
Batch calibration: Set "batch_limit" (the maximum number of points allowed in every batch) so that the
average batch size (number of stacked pointclouds) is the one asked.
Neighbors calibration: Set the "neighborhood_limits" (the maximum number of neighbors allowed in convolutions)
so that 90% of the neighborhoods remain untouched. There is a limit for each layer.
"""
##############################
# Previously saved calibration
##############################
print('\nStarting Calibration of max_in_points value (use verbose=True for more details)')
t0 = time.time()
redo = False
# Batch limit
# ***********
# Load max_in_limit dictionary
max_in_lim_file = join(self.dataset.path, 'max_in_limits.pkl')
if exists(max_in_lim_file):
with open(max_in_lim_file, 'rb') as file:
max_in_lim_dict = pickle.load(file)
else:
max_in_lim_dict = {}
# Check if the max_in limit associated with current parameters exists
if self.dataset.balance_classes:
sampler_method = 'balanced'
else:
sampler_method = 'random'
key = '{:s}_{:.3f}_{:.3f}'.format(sampler_method,
self.dataset.in_R,
self.dataset.config.first_subsampling_dl)
if key in max_in_lim_dict:
self.dataset.max_in_p = max_in_lim_dict[key]
else:
redo = True
if verbose:
print('\nPrevious calibration found:')
print('Check max_in limit dictionary')
if key in max_in_lim_dict:
color = bcolors.OKGREEN
v = str(int(max_in_lim_dict[key]))
else:
color = bcolors.FAIL
v = '?'
print('{:}\"{:s}\": {:s}{:}'.format(color, key, v, bcolors.ENDC))
if redo:
########################
# Batch calib parameters
########################
# Loop parameters
last_display = time.time()
i = 0
breaking = False
all_lengths = []
N = 1000
#####################
# Perform calibration
#####################
for epoch in range(10):
for batch_i, batch in enumerate(dataloader):
# Control max_in_points value
all_lengths += batch.lengths[0]
# Convergence
if len(all_lengths) > N:
breaking = True
break
i += 1
t = time.time()
# Console display (only one per second)
if t - last_display > 1.0:
last_display = t
message = 'Collecting {:d} in_points: {:5.1f}%'
print(message.format(N,
100 * len(all_lengths) / N))
if breaking:
break
self.dataset.max_in_p = int(np.percentile(all_lengths, 100*untouched_ratio))
if verbose:
# Create histogram
a = 1
# Save max_in_limit dictionary
max_in_lim_dict[key] = self.dataset.max_in_p
with open(max_in_lim_file, 'wb') as file:
pickle.dump(max_in_lim_dict, file)
# Update value in config
if self.dataset.set == 'training':
config.max_in_points = self.dataset.max_in_p
else:
config.max_val_points = self.dataset.max_in_p
print('Calibration done in {:.1f}s\n'.format(time.time() - t0))
return
def calibration(self, dataloader, untouched_ratio=0.9, verbose=False):
"""
Method performing batch and neighbors calibration.
Batch calibration: Set "batch_limit" (the maximum number of points allowed in every batch) so that the
average batch size (number of stacked pointclouds) is the one asked.
Neighbors calibration: Set the "neighborhood_limits" (the maximum number of neighbors allowed in convolutions)
so that 90% of the neighborhoods remain untouched. There is a limit for each layer.
"""
##############################
# Previously saved calibration
##############################
print('\nStarting Calibration (use verbose=True for more details)')
t0 = time.time()
redo = False
# Batch limit
# ***********
# Load batch_limit dictionary
batch_lim_file = join(self.dataset.path, 'batch_limits.pkl')
if exists(batch_lim_file):
with open(batch_lim_file, 'rb') as file:
batch_lim_dict = pickle.load(file)
else:
batch_lim_dict = {}
# Check if the batch limit associated with current parameters exists
if self.dataset.balance_classes:
sampler_method = 'balanced'
else:
sampler_method = 'random'
key = '{:s}_{:.3f}_{:.3f}_{:d}_{:d}'.format(sampler_method,
self.dataset.in_R,
self.dataset.config.first_subsampling_dl,
self.dataset.batch_num,
self.dataset.max_in_p)
if key in batch_lim_dict:
self.dataset.batch_limit[0] = batch_lim_dict[key]
else:
redo = True
if verbose:
print('\nPrevious calibration found:')
print('Check batch limit dictionary')
if key in batch_lim_dict:
color = bcolors.OKGREEN
v = str(int(batch_lim_dict[key]))
else:
color = bcolors.FAIL
v = '?'
print('{:}\"{:s}\": {:s}{:}'.format(color, key, v, bcolors.ENDC))
# Neighbors limit
# ***************
# Load neighb_limits dictionary
neighb_lim_file = join(self.dataset.path, 'neighbors_limits.pkl')
if exists(neighb_lim_file):
with open(neighb_lim_file, 'rb') as file:
neighb_lim_dict = pickle.load(file)
else:
neighb_lim_dict = {}
# Check if the limit associated with current parameters exists (for each layer)
neighb_limits = []
for layer_ind in range(self.dataset.config.num_layers):
dl = self.dataset.config.first_subsampling_dl * (2**layer_ind)
if self.dataset.config.deform_layers[layer_ind]:
r = dl * self.dataset.config.deform_radius
else:
r = dl * self.dataset.config.conv_radius
key = '{:s}_{:d}_{:.3f}_{:.3f}'.format(sampler_method, self.dataset.max_in_p, dl, r)
if key in neighb_lim_dict:
neighb_limits += [neighb_lim_dict[key]]
if len(neighb_limits) == self.dataset.config.num_layers:
self.dataset.neighborhood_limits = neighb_limits
else:
redo = True
if verbose:
print('Check neighbors limit dictionary')
for layer_ind in range(self.dataset.config.num_layers):
dl = self.dataset.config.first_subsampling_dl * (2**layer_ind)
if self.dataset.config.deform_layers[layer_ind]:
r = dl * self.dataset.config.deform_radius
else:
r = dl * self.dataset.config.conv_radius
key = '{:s}_{:d}_{:.3f}_{:.3f}'.format(sampler_method, self.dataset.max_in_p, dl, r)
if key in neighb_lim_dict:
color = bcolors.OKGREEN
v = str(neighb_lim_dict[key])
else:
color = bcolors.FAIL
v = '?'
print('{:}\"{:s}\": {:s}{:}'.format(color, key, v, bcolors.ENDC))
if redo:
############################
# Neighbors calib parameters
############################
# From config parameter, compute higher bound of neighbors number in a neighborhood
hist_n = int(np.ceil(4 / 3 * np.pi * (self.dataset.config.deform_radius + 1) ** 3))
# Histogram of neighborhood sizes
neighb_hists = np.zeros((self.dataset.config.num_layers, hist_n), dtype=np.int32)
########################
# Batch calib parameters
########################
# Estimated average batch size and target value
estim_b = 0
target_b = self.dataset.batch_num
# Calibration parameters
low_pass_T = 10
Kp = 100.0
finer = False
# Convergence parameters
smooth_errors = []
converge_threshold = 0.1
# Save input pointcloud sizes to control max_in_points
cropped_n = 0
all_n = 0
# Loop parameters
last_display = time.time()
i = 0
breaking = False
#####################
# Perform calibration
#####################
for epoch in range(10):
for batch_i, batch in enumerate(dataloader):
# Control max_in_points value
are_cropped = batch.lengths[0] > self.dataset.max_in_p - 1
cropped_n += torch.sum(are_cropped.type(torch.int32)).item()
all_n += int(batch.lengths[0].shape[0])
# Update neighborhood histogram
counts = [np.sum(neighb_mat.numpy() < neighb_mat.shape[0], axis=1) for neighb_mat in batch.neighbors]
hists = [np.bincount(c, minlength=hist_n)[:hist_n] for c in counts]
neighb_hists += np.vstack(hists)
# batch length
b = len(batch.frame_inds)
# Update estim_b (low pass filter)
estim_b += (b - estim_b) / low_pass_T
# Estimate error (noisy)
error = target_b - b
# Save smooth errors for convergene check
smooth_errors.append(target_b - estim_b)
if len(smooth_errors) > 10:
smooth_errors = smooth_errors[1:]
# Update batch limit with P controller
self.dataset.batch_limit += Kp * error
# finer low pass filter when closing in
if not finer and np.abs(estim_b - target_b) < 1:
low_pass_T = 100
finer = True
# Convergence
if finer and np.max(np.abs(smooth_errors)) < converge_threshold:
breaking = True
break
i += 1
t = time.time()
# Console display (only one per second)
if verbose and (t - last_display) > 1.0:
last_display = t
message = 'Step {:5d} estim_b ={:5.2f} batch_limit ={:7d}'
print(message.format(i,
estim_b,
int(self.dataset.batch_limit)))
if breaking:
break
# Use collected neighbor histogram to get neighbors limit
cumsum = np.cumsum(neighb_hists.T, axis=0)
percentiles = np.sum(cumsum < (untouched_ratio * cumsum[hist_n - 1, :]), axis=0)
self.dataset.neighborhood_limits = percentiles
if verbose:
# Crop histogram
while np.sum(neighb_hists[:, -1]) == 0:
neighb_hists = neighb_hists[:, :-1]
hist_n = neighb_hists.shape[1]
print('\n**************************************************\n')
line0 = 'neighbors_num '
for layer in range(neighb_hists.shape[0]):
line0 += '| layer {:2d} '.format(layer)
print(line0)
for neighb_size in range(hist_n):
line0 = ' {:4d} '.format(neighb_size)
for layer in range(neighb_hists.shape[0]):
if neighb_size > percentiles[layer]:
color = bcolors.FAIL
else:
color = bcolors.OKGREEN
line0 += '|{:}{:10d}{:} '.format(color,
neighb_hists[layer, neighb_size],
bcolors.ENDC)
print(line0)
print('\n**************************************************\n')
print('\nchosen neighbors limits: ', percentiles)
print()
# Control max_in_points value
print('\n**************************************************\n')
if cropped_n > 0.3 * all_n:
color = bcolors.FAIL
else:
color = bcolors.OKGREEN
print('Current value of max_in_points {:d}'.format(self.dataset.max_in_p))
print(' > {:}{:.1f}% inputs are cropped{:}'.format(color, 100 * cropped_n / all_n, bcolors.ENDC))
if cropped_n > 0.3 * all_n:
print('\nTry a higher max_in_points value\n'.format(100 * cropped_n / all_n))
#raise ValueError('Value of max_in_points too low')
print('\n**************************************************\n')
# Save batch_limit dictionary
key = '{:s}_{:.3f}_{:.3f}_{:d}_{:d}'.format(sampler_method,
self.dataset.in_R,
self.dataset.config.first_subsampling_dl,
self.dataset.batch_num,
self.dataset.max_in_p)
batch_lim_dict[key] = float(self.dataset.batch_limit)
with open(batch_lim_file, 'wb') as file:
pickle.dump(batch_lim_dict, file)
# Save neighb_limit dictionary
for layer_ind in range(self.dataset.config.num_layers):
dl = self.dataset.config.first_subsampling_dl * (2 ** layer_ind)
if self.dataset.config.deform_layers[layer_ind]:
r = dl * self.dataset.config.deform_radius
else:
r = dl * self.dataset.config.conv_radius
key = '{:s}_{:d}_{:.3f}_{:.3f}'.format(sampler_method, self.dataset.max_in_p, dl, r)
neighb_lim_dict[key] = self.dataset.neighborhood_limits[layer_ind]
with open(neighb_lim_file, 'wb') as file:
pickle.dump(neighb_lim_dict, file)
print('Calibration done in {:.1f}s\n'.format(time.time() - t0))
return
class SemanticKittiCustomBatch:
"""Custom batch definition with memory pinning for SemanticKitti"""
def __init__(self, input_list):
# Get rid of batch dimension
input_list = input_list[0]
# Number of layers
L = int(input_list[0])
# Extract input tensors from the list of numpy array
ind = 1
self.points = [torch.from_numpy(nparray) for nparray in input_list[ind:ind+L]]
ind += L
self.neighbors = [torch.from_numpy(nparray) for nparray in input_list[ind:ind+L]]
ind += L
self.pools = [torch.from_numpy(nparray) for nparray in input_list[ind:ind+L]]
ind += L
self.upsamples = [torch.from_numpy(nparray) for nparray in input_list[ind:ind+L]]
ind += L
self.lengths = [torch.from_numpy(nparray) for nparray in input_list[ind:ind+L]]
ind += L
self.features = torch.from_numpy(input_list[ind])
ind += 1
self.labels = torch.from_numpy(input_list[ind])
ind += 1
self.scales = torch.from_numpy(input_list[ind])
ind += 1
self.rots = torch.from_numpy(input_list[ind])
ind += 1
self.frame_inds = torch.from_numpy(input_list[ind])
ind += 1
self.frame_centers = torch.from_numpy(input_list[ind])
ind += 1
self.reproj_inds = input_list[ind]
ind += 1
self.reproj_masks = input_list[ind]
ind += 1
self.val_labels = input_list[ind]
return
def pin_memory(self):
"""
Manual pinning of the memory
"""
self.points = [in_tensor.pin_memory() for in_tensor in self.points]
self.neighbors = [in_tensor.pin_memory() for in_tensor in self.neighbors]
self.pools = [in_tensor.pin_memory() for in_tensor in self.pools]
self.upsamples = [in_tensor.pin_memory() for in_tensor in self.upsamples]
self.lengths = [in_tensor.pin_memory() for in_tensor in self.lengths]
self.features = self.features.pin_memory()
self.labels = self.labels.pin_memory()
self.scales = self.scales.pin_memory()
self.rots = self.rots.pin_memory()
self.frame_inds = self.frame_inds.pin_memory()
self.frame_centers = self.frame_centers.pin_memory()
return self
def to(self, device):
self.points = [in_tensor.to(device) for in_tensor in self.points]
self.neighbors = [in_tensor.to(device) for in_tensor in self.neighbors]
self.pools = [in_tensor.to(device) for in_tensor in self.pools]
self.upsamples = [in_tensor.to(device) for in_tensor in self.upsamples]
self.lengths = [in_tensor.to(device) for in_tensor in self.lengths]
self.features = self.features.to(device)
self.labels = self.labels.to(device)
self.scales = self.scales.to(device)
self.rots = self.rots.to(device)
self.frame_inds = self.frame_inds.to(device)
self.frame_centers = self.frame_centers.to(device)
return self
def unstack_points(self, layer=None):
"""Unstack the points"""
return self.unstack_elements('points', layer)
def unstack_neighbors(self, layer=None):
"""Unstack the neighbors indices"""
return self.unstack_elements('neighbors', layer)
def unstack_pools(self, layer=None):
"""Unstack the pooling indices"""
return self.unstack_elements('pools', layer)
def unstack_elements(self, element_name, layer=None, to_numpy=True):
"""
Return a list of the stacked elements in the batch at a certain layer. If no layer is given, then return all
layers
"""
if element_name == 'points':
elements = self.points
elif element_name == 'neighbors':
elements = self.neighbors
elif element_name == 'pools':
elements = self.pools[:-1]
else:
raise ValueError('Unknown element name: {:s}'.format(element_name))
all_p_list = []
for layer_i, layer_elems in enumerate(elements):
if layer is None or layer == layer_i:
i0 = 0
p_list = []
if element_name == 'pools':
lengths = self.lengths[layer_i+1]
else:
lengths = self.lengths[layer_i]
for b_i, length in enumerate(lengths):
elem = layer_elems[i0:i0 + length]
if element_name == 'neighbors':
elem[elem >= self.points[layer_i].shape[0]] = -1
elem[elem >= 0] -= i0
elif element_name == 'pools':
elem[elem >= self.points[layer_i].shape[0]] = -1
elem[elem >= 0] -= torch.sum(self.lengths[layer_i][:b_i])
i0 += length
if to_numpy:
p_list.append(elem.numpy())
else:
p_list.append(elem)
if layer == layer_i:
return p_list
all_p_list.append(p_list)
return all_p_list
def SemanticKittiCollate(batch_data):
return SemanticKittiCustomBatch(batch_data)
def debug_timing(dataset, loader):
"""Timing of generator function"""
t = [time.time()]
last_display = time.time()
mean_dt = np.zeros(2)
estim_b = dataset.batch_num
estim_N = 0
for epoch in range(10):
for batch_i, batch in enumerate(loader):
# print(batch_i, tuple(points.shape), tuple(normals.shape), labels, indices, in_sizes)
# New time
t = t[-1:]
t += [time.time()]
# Update estim_b (low pass filter)
estim_b += (len(batch.frame_inds) - estim_b) / 100
estim_N += (batch.features.shape[0] - estim_N) / 10
# Pause simulating computations
time.sleep(0.05)
t += [time.time()]
# Average timing
mean_dt = 0.9 * mean_dt + 0.1 * (np.array(t[1:]) - np.array(t[:-1]))
# Console display (only one per second)
if (t[-1] - last_display) > -1.0:
last_display = t[-1]
message = 'Step {:08d} -> (ms/batch) {:8.2f} {:8.2f} / batch = {:.2f} - {:.0f}'
print(message.format(batch_i,
1000 * mean_dt[0],
1000 * mean_dt[1],
estim_b,
estim_N))
print('************* Epoch ended *************')
_, counts = np.unique(dataset.input_labels, return_counts=True)
print(counts)
def debug_class_w(dataset, loader):
"""Timing of generator function"""
i = 0
2020-04-10 19:38:24 +00:00
counts = np.zeros((dataset.num_classes,), dtype=np.int64)
2020-04-09 21:13:27 +00:00
s = '{:^6}|'.format('step')
for c in dataset.label_names:
s += '{:^6}'.format(c[:4])
print(s)
print(6*'-' + '|' + 6*dataset.num_classes*'-')
for epoch in range(10):
for batch_i, batch in enumerate(loader):
# print(batch_i, tuple(points.shape), tuple(normals.shape), labels, indices, in_sizes)
# count labels
new_counts = np.bincount(batch.labels)
2020-04-10 19:38:24 +00:00
2020-04-09 21:13:27 +00:00
counts[:new_counts.shape[0]] += new_counts.astype(np.int64)
# Update proportions
proportions = 1000 * counts / np.sum(counts)
s = '{:^6d}|'.format(i)
for pp in proportions:
s += '{:^6.1f}'.format(pp)
print(s)
i += 1