KPConv-PyTorch/datasets/common.py

519 lines
18 KiB
Python
Raw Normal View History

2020-03-31 19:42:35 +00:00
#
#
# 0=================================0
# | Kernel Point Convolutions |
# 0=================================0
#
#
# ----------------------------------------------------------------------------------------------------------------------
#
# Class handling datasets
#
# ----------------------------------------------------------------------------------------------------------------------
#
# Hugues THOMAS - 11/06/2018
#
# ----------------------------------------------------------------------------------------------------------------------
#
# Imports and global variables
# \**********************************/
#
# Common libs
import time
import os
import numpy as np
import sys
import torch
from torch.utils.data import DataLoader, Dataset
from utils.config import Config
from utils.mayavi_visu import *
from kernels.kernel_points import create_3D_rotations
# Subsampling extension
import cpp_wrappers.cpp_subsampling.grid_subsampling as cpp_subsampling
import cpp_wrappers.cpp_neighbors.radius_neighbors as cpp_neighbors
# ----------------------------------------------------------------------------------------------------------------------
#
# Utility functions
# \***********************/
#
def grid_subsampling(points, features=None, labels=None, sampleDl=0.1, verbose=0):
"""
CPP wrapper for a grid subsampling (method = barycenter for points and features)
:param points: (N, 3) matrix of input points
:param features: optional (N, d) matrix of features (floating number)
:param labels: optional (N,) matrix of integer labels
:param sampleDl: parameter defining the size of grid voxels
:param verbose: 1 to display
:return: subsampled points, with features and/or labels depending of the input
"""
if (features is None) and (labels is None):
return cpp_subsampling.subsample(points,
sampleDl=sampleDl,
verbose=verbose)
elif (labels is None):
return cpp_subsampling.subsample(points,
features=features,
sampleDl=sampleDl,
verbose=verbose)
elif (features is None):
return cpp_subsampling.subsample(points,
classes=labels,
sampleDl=sampleDl,
verbose=verbose)
else:
return cpp_subsampling.subsample(points,
features=features,
classes=labels,
sampleDl=sampleDl,
verbose=verbose)
def batch_grid_subsampling(points, batches_len, features=None, labels=None, sampleDl=0.1, max_p=0, verbose=0):
"""
CPP wrapper for a grid subsampling (method = barycenter for points and features)
:param points: (N, 3) matrix of input points
:param features: optional (N, d) matrix of features (floating number)
:param labels: optional (N,) matrix of integer labels
:param sampleDl: parameter defining the size of grid voxels
:param verbose: 1 to display
:return: subsampled points, with features and/or labels depending of the input
"""
if (features is None) and (labels is None):
return cpp_subsampling.subsample_batch(points,
batches_len,
sampleDl=sampleDl,
max_p=max_p,
verbose=verbose)
elif (labels is None):
return cpp_subsampling.subsample_batch(points,
batches_len,
features=features,
sampleDl=sampleDl,
max_p=max_p,
verbose=verbose)
elif (features is None):
return cpp_subsampling.subsample_batch(points,
batches_len,
classes=labels,
sampleDl=sampleDl,
max_p=max_p,
verbose=verbose)
else:
return cpp_subsampling.subsample_batch(points,
batches_len,
features=features,
classes=labels,
sampleDl=sampleDl,
max_p=max_p,
verbose=verbose)
def batch_neighbors(queries, supports, q_batches, s_batches, radius):
"""
Computes neighbors for a batch of queries and supports
:param queries: (N1, 3) the query points
:param supports: (N2, 3) the support points
:param q_batches: (B) the list of lengths of batch elements in queries
:param s_batches: (B)the list of lengths of batch elements in supports
:param radius: float32
:return: neighbors indices
"""
return cpp_neighbors.batch_query(queries, supports, q_batches, s_batches, radius=radius)
# ----------------------------------------------------------------------------------------------------------------------
#
# Class definition
# \**********************/
class PointCloudDataset(Dataset):
"""Parent class for Point Cloud Datasets."""
def __init__(self, name):
"""
Initialize parameters of the dataset here.
"""
self.name = name
self.path = ''
self.label_to_names = {}
self.num_classes = 0
self.label_values = np.zeros((0,), dtype=np.int32)
self.label_names = []
self.label_to_idx = {}
self.name_to_label = {}
self.config = Config()
self.neighborhood_limits = []
return
def __len__(self):
"""
Return the length of data here
"""
return 0
def __getitem__(self, idx):
"""
Return the item at the given index
"""
return 0
def init_labels(self):
# Initialize all label parameters given the label_to_names dict
self.num_classes = len(self.label_to_names)
self.label_values = np.sort([k for k, v in self.label_to_names.items()])
self.label_names = [self.label_to_names[k] for k in self.label_values]
self.label_to_idx = {l: i for i, l in enumerate(self.label_values)}
self.name_to_label = {v: k for k, v in self.label_to_names.items()}
def augmentation_transform(self, points, normals=None, verbose=False):
"""Implementation of an augmentation transform for point clouds."""
##########
# Rotation
##########
# Initialize rotation matrix
R = np.eye(points.shape[1])
if points.shape[1] == 3:
if self.config.augment_rotation == 'vertical':
# Create random rotations
theta = np.random.rand() * 2 * np.pi
c, s = np.cos(theta), np.sin(theta)
R = np.array([[c, -s, 0], [s, c, 0], [0, 0, 1]], dtype=np.float32)
elif self.config.augment_rotation == 'all':
# Choose two random angles for the first vector in polar coordinates
theta = np.random.rand() * 2 * np.pi
phi = (np.random.rand() - 0.5) * np.pi
# Create the first vector in carthesian coordinates
u = np.array([np.cos(theta) * np.cos(phi), np.sin(theta) * np.cos(phi), np.sin(phi)])
# Choose a random rotation angle
alpha = np.random.rand() * 2 * np.pi
# Create the rotation matrix with this vector and angle
R = create_3D_rotations(np.reshape(u, (1, -1)), np.reshape(alpha, (1, -1)))[0]
R = R.astype(np.float32)
#######
# Scale
#######
# Choose random scales for each example
min_s = self.config.augment_scale_min
max_s = self.config.augment_scale_max
if self.config.augment_scale_anisotropic:
scale = np.random.rand(points.shape[1]) * (max_s - min_s) + min_s
else:
scale = np.random.rand() * (max_s - min_s) - min_s
# Add random symmetries to the scale factor
symmetries = np.array(self.config.augment_symmetries).astype(np.int32)
symmetries *= np.random.randint(2, size=points.shape[1])
scale = (scale * symmetries * 2 - 1).astype(np.float32)
#######
# Noise
#######
noise = (np.random.randn(points.shape[0], points.shape[1]) * self.config.augment_noise).astype(np.float32)
##################
# Apply transforms
##################
augmented_points = np.dot(points, R) * scale + noise
if normals is None:
return augmented_points, scale, R
else:
# Anisotropic scale of the normals thanks to cross product formula
normal_scale = scale[[1, 2, 0]] * scale[[2, 0, 1]]
augmented_normals = np.dot(normals, R) * normal_scale
# Renormalise
augmented_normals *= 1 / (np.linalg.norm(augmented_normals, axis=1, keepdims=True) + 1e-6)
if verbose:
test_p = [np.vstack([points, augmented_points])]
test_n = [np.vstack([normals, augmented_normals])]
test_l = [np.hstack([points[:, 2]*0, augmented_points[:, 2]*0+1])]
show_ModelNet_examples(test_p, test_n, test_l)
return augmented_points, augmented_normals, scale, R
def big_neighborhood_filter(self, neighbors, layer):
"""
Filter neighborhoods with max number of neighbors. Limit is set to keep XX% of the neighborhoods untouched.
Limit is computed at initialization
"""
# crop neighbors matrix
if len(self.neighborhood_limits) > 0:
return neighbors[:, :self.neighborhood_limits[layer]]
else:
return neighbors
def classification_inputs(self,
stacked_points,
stacked_features,
labels,
stack_lengths):
# Starting radius of convolutions
r_normal = self.config.first_subsampling_dl * self.config.conv_radius
# Starting layer
layer_blocks = []
# Lists of inputs
input_points = []
input_neighbors = []
input_pools = []
input_stack_lengths = []
deform_layers = []
######################
# Loop over the blocks
######################
arch = self.config.architecture
for block_i, block in enumerate(arch):
# Get all blocks of the layer
if not ('pool' in block or 'strided' in block or 'global' in block or 'upsample' in block):
layer_blocks += [block]
continue
# Convolution neighbors indices
# *****************************
deform_layer = False
if layer_blocks:
# Convolutions are done in this layer, compute the neighbors with the good radius
if np.any(['deformable' in blck for blck in layer_blocks]):
r = r_normal * self.config.deform_radius / self.config.conv_radius
deform_layer = True
else:
r = r_normal
conv_i = batch_neighbors(stacked_points, stacked_points, stack_lengths, stack_lengths, r)
else:
# This layer only perform pooling, no neighbors required
conv_i = np.zeros((0, 1), dtype=np.int32)
# Pooling neighbors indices
# *************************
# If end of layer is a pooling operation
if 'pool' in block or 'strided' in block:
# New subsampling length
dl = 2 * r_normal / self.config.conv_radius
# Subsampled points
pool_p, pool_b = batch_grid_subsampling(stacked_points, stack_lengths, sampleDl=dl)
# Radius of pooled neighbors
if 'deformable' in block:
r = r_normal * self.config.deform_radius / self.config.conv_radius
deform_layer = True
else:
r = r_normal
# Subsample indices
pool_i = batch_neighbors(pool_p, stacked_points, pool_b, stack_lengths, r)
else:
# No pooling in the end of this layer, no pooling indices required
pool_i = np.zeros((0, 1), dtype=np.int32)
pool_p = np.zeros((0, 3), dtype=np.float32)
pool_b = np.zeros((0,), dtype=np.int32)
# Reduce size of neighbors matrices by eliminating furthest point
conv_i = self.big_neighborhood_filter(conv_i, len(input_points))
pool_i = self.big_neighborhood_filter(pool_i, len(input_points))
# Updating input lists
input_points += [stacked_points]
input_neighbors += [conv_i.astype(np.int64)]
input_pools += [pool_i.astype(np.int64)]
input_stack_lengths += [stack_lengths]
deform_layers += [deform_layer]
# New points for next layer
stacked_points = pool_p
stack_lengths = pool_b
# Update radius and reset blocks
r_normal *= 2
layer_blocks = []
# Stop when meeting a global pooling or upsampling
if 'global' in block or 'upsample' in block:
break
###############
# Return inputs
###############
# Save deform layers
# list of network inputs
li = input_points + input_neighbors + input_pools + input_stack_lengths
li += [stacked_features, labels]
return li
def segmentation_inputs(self,
stacked_points,
stacked_features,
labels,
stack_lengths):
# Starting radius of convolutions
r_normal = self.config.first_subsampling_dl * self.config.conv_radius
# Starting layer
layer_blocks = []
# Lists of inputs
input_points = []
input_neighbors = []
input_pools = []
input_upsamples = []
input_stack_lengths = []
deform_layers = []
######################
# Loop over the blocks
######################
arch = self.config.architecture
for block_i, block in enumerate(arch):
# Get all blocks of the layer
if not ('pool' in block or 'strided' in block or 'global' in block or 'upsample' in block):
layer_blocks += [block]
continue
# Convolution neighbors indices
# *****************************
deform_layer = False
if layer_blocks:
# Convolutions are done in this layer, compute the neighbors with the good radius
if np.any(['deformable' in blck for blck in layer_blocks]):
r = r_normal * self.config.deform_radius / self.config.conv_radius
deform_layer = True
else:
r = r_normal
conv_i = batch_neighbors(stacked_points, stacked_points, stack_lengths, stack_lengths, r)
else:
# This layer only perform pooling, no neighbors required
conv_i = np.zeros((0, 1), dtype=np.int32)
# Pooling neighbors indices
# *************************
# If end of layer is a pooling operation
if 'pool' in block or 'strided' in block:
# New subsampling length
dl = 2 * r_normal / self.config.conv_radius
# Subsampled points
pool_p, pool_b = batch_grid_subsampling(stacked_points, stack_lengths, sampleDl=dl)
# Radius of pooled neighbors
if 'deformable' in block:
r = r_normal * self.config.deform_radius / self.config.conv_radius
deform_layer = True
else:
r = r_normal
# Subsample indices
pool_i = batch_neighbors(pool_p, stacked_points, pool_b, stack_lengths, r)
# Upsample indices (with the radius of the next layer to keep wanted density)
up_i = batch_neighbors(stacked_points, pool_p, stack_lengths, pool_b, 2 * r)
else:
# No pooling in the end of this layer, no pooling indices required
pool_i = np.zeros((0, 1), dtype=np.int32)
pool_p = np.zeros((0, 3), dtype=np.float32)
pool_b = np.zeros((0,), dtype=np.int32)
up_i = np.zeros((0, 1), dtype=np.int32)
# Reduce size of neighbors matrices by eliminating furthest point
conv_i = self.big_neighborhood_filter(conv_i, len(input_points))
pool_i = self.big_neighborhood_filter(pool_i, len(input_points))
2020-04-02 21:31:35 +00:00
if up_i.shape[0] > 0:
up_i = self.big_neighborhood_filter(up_i, len(input_points)+1)
2020-03-31 19:42:35 +00:00
# Updating input lists
input_points += [stacked_points]
input_neighbors += [conv_i.astype(np.int64)]
input_pools += [pool_i.astype(np.int64)]
input_upsamples += [up_i.astype(np.int64)]
input_stack_lengths += [stack_lengths]
deform_layers += [deform_layer]
# New points for next layer
stacked_points = pool_p
stack_lengths = pool_b
# Update radius and reset blocks
r_normal *= 2
layer_blocks = []
# Stop when meeting a global pooling or upsampling
if 'global' in block or 'upsample' in block:
break
###############
# Return inputs
###############
# Save deform layers
# list of network inputs
li = input_points + input_neighbors + input_pools + input_upsamples + input_stack_lengths
li += [stacked_features, labels]
return li