1832 lines
74 KiB
Python
1832 lines
74 KiB
Python
|
#
|
||
|
#
|
||
|
# 0=================================0
|
||
|
# | Kernel Point Convolutions |
|
||
|
# 0=================================0
|
||
|
#
|
||
|
#
|
||
|
# ----------------------------------------------------------------------------------------------------------------------
|
||
|
#
|
||
|
# Class handling the visualization
|
||
|
#
|
||
|
# ----------------------------------------------------------------------------------------------------------------------
|
||
|
#
|
||
|
# Hugues THOMAS - 11/06/2018
|
||
|
#
|
||
|
|
||
|
|
||
|
# ----------------------------------------------------------------------------------------------------------------------
|
||
|
#
|
||
|
# Imports and global variables
|
||
|
# \**********************************/
|
||
|
#
|
||
|
|
||
|
|
||
|
# Basic libs
|
||
|
import torch
|
||
|
import numpy as np
|
||
|
from sklearn.neighbors import KDTree
|
||
|
from os import makedirs, remove, rename, listdir
|
||
|
from os.path import exists, join
|
||
|
import time
|
||
|
from mayavi import mlab
|
||
|
import sys
|
||
|
|
||
|
from models.blocks import KPConv
|
||
|
|
||
|
# PLY reader
|
||
|
from utils.ply import write_ply, read_ply
|
||
|
|
||
|
# Configuration class
|
||
|
from utils.config import Config, bcolors
|
||
|
|
||
|
|
||
|
# ----------------------------------------------------------------------------------------------------------------------
|
||
|
#
|
||
|
# Trainer Class
|
||
|
# \*******************/
|
||
|
#
|
||
|
|
||
|
|
||
|
class ModelVisualizer:
|
||
|
|
||
|
# Initialization methods
|
||
|
# ------------------------------------------------------------------------------------------------------------------
|
||
|
|
||
|
def __init__(self, net, config, chkp_path, on_gpu=True):
|
||
|
"""
|
||
|
Initialize training parameters and reload previous model for restore/finetune
|
||
|
:param net: network object
|
||
|
:param config: configuration object
|
||
|
:param chkp_path: path to the checkpoint that needs to be loaded (None for new training)
|
||
|
:param finetune: finetune from checkpoint (True) or restore training from checkpoint (False)
|
||
|
:param on_gpu: Train on GPU or CPU
|
||
|
"""
|
||
|
|
||
|
############
|
||
|
# Parameters
|
||
|
############
|
||
|
|
||
|
# Choose to train on CPU or GPU
|
||
|
if on_gpu and torch.cuda.is_available():
|
||
|
self.device = torch.device("cuda:0")
|
||
|
else:
|
||
|
self.device = torch.device("cpu")
|
||
|
net.to(self.device)
|
||
|
|
||
|
##########################
|
||
|
# Load previous checkpoint
|
||
|
##########################
|
||
|
|
||
|
checkpoint = torch.load(chkp_path)
|
||
|
net.load_state_dict(checkpoint['model_state_dict'])
|
||
|
self.epoch = checkpoint['epoch']
|
||
|
net.eval()
|
||
|
print("Model and training state restored.")
|
||
|
|
||
|
return
|
||
|
|
||
|
# Main visualization methods
|
||
|
# ------------------------------------------------------------------------------------------------------------------
|
||
|
|
||
|
def top_relu_activations(self, model, dataset, relu_idx=0, top_num=5):
|
||
|
"""
|
||
|
Test the model on test dataset to see which points activate the most each neurons in a relu layer
|
||
|
:param model: model used at training
|
||
|
:param dataset: dataset used at training
|
||
|
:param relu_idx: which features are to be visualized
|
||
|
:param top_num: how many top candidates are kept per features
|
||
|
"""
|
||
|
|
||
|
#####################################
|
||
|
# First choose the visualized feature
|
||
|
#####################################
|
||
|
|
||
|
# List all relu ops
|
||
|
all_ops = [op for op in tf.get_default_graph().get_operations() if op.name.startswith('KernelPointNetwork')
|
||
|
and op.name.endswith('LeakyRelu')]
|
||
|
|
||
|
# List all possible Relu indices
|
||
|
print('\nPossible Relu indices:')
|
||
|
for i, t in enumerate(all_ops):
|
||
|
print(i, ': ', t.name)
|
||
|
|
||
|
# Print the chosen one
|
||
|
if relu_idx is not None:
|
||
|
features_tensor = all_ops[relu_idx].outputs[0]
|
||
|
else:
|
||
|
relu_idx = int(input('Choose a Relu index: '))
|
||
|
features_tensor = all_ops[relu_idx].outputs[0]
|
||
|
|
||
|
# Get parameters
|
||
|
layer_idx = int(features_tensor.name.split('/')[1][6:])
|
||
|
if 'strided' in all_ops[relu_idx].name and not ('strided' in all_ops[relu_idx+1].name):
|
||
|
layer_idx += 1
|
||
|
features_dim = int(features_tensor.shape[1])
|
||
|
radius = model.config.first_subsampling_dl * model.config.density_parameter * (2 ** layer_idx)
|
||
|
|
||
|
print('You chose to compute the output of operation named:\n' + all_ops[relu_idx].name)
|
||
|
print('\nIt contains {:d} features.'.format(int(features_tensor.shape[1])))
|
||
|
|
||
|
print('\n****************************************************************************')
|
||
|
|
||
|
#######################
|
||
|
# Initialize containers
|
||
|
#######################
|
||
|
|
||
|
# Initialize containers
|
||
|
self.top_features = -np.ones((top_num, features_dim))
|
||
|
self.top_classes = -np.ones((top_num, features_dim), dtype=np.int32)
|
||
|
self.saving = model.config.saving
|
||
|
|
||
|
# Testing parameters
|
||
|
num_votes = 3
|
||
|
|
||
|
# Create visu folder
|
||
|
self.visu_path = None
|
||
|
self.fmt_str = None
|
||
|
if model.config.saving:
|
||
|
self.visu_path = join('visu',
|
||
|
'visu_' + model.saving_path.split('/')[-1],
|
||
|
'top_activations',
|
||
|
'Relu{:02d}'.format(relu_idx))
|
||
|
self.fmt_str = 'f{:04d}_top{:02d}.ply'
|
||
|
if not exists(self.visu_path):
|
||
|
makedirs(self.visu_path)
|
||
|
|
||
|
# *******************
|
||
|
# Network predictions
|
||
|
# *******************
|
||
|
|
||
|
mean_dt = np.zeros(2)
|
||
|
last_display = time.time()
|
||
|
for v in range(num_votes):
|
||
|
|
||
|
# Run model on all test examples
|
||
|
# ******************************
|
||
|
|
||
|
# Initialise iterator with test data
|
||
|
if model.config.dataset.startswith('S3DIS'):
|
||
|
self.sess.run(dataset.val_init_op)
|
||
|
else:
|
||
|
self.sess.run(dataset.test_init_op)
|
||
|
count = 0
|
||
|
|
||
|
while True:
|
||
|
try:
|
||
|
|
||
|
if model.config.dataset.startswith('ShapeNetPart'):
|
||
|
if model.config.dataset.split('_')[1] == 'multi':
|
||
|
label_op = model.inputs['super_labels']
|
||
|
else:
|
||
|
label_op = model.inputs['point_labels']
|
||
|
elif model.config.dataset.startswith('S3DIS'):
|
||
|
label_op = model.inputs['point_labels']
|
||
|
elif model.config.dataset.startswith('Scannet'):
|
||
|
label_op = model.inputs['point_labels']
|
||
|
elif model.config.dataset.startswith('ModelNet40'):
|
||
|
label_op = model.inputs['labels']
|
||
|
else:
|
||
|
raise ValueError('Unsupported dataset')
|
||
|
|
||
|
# Run one step of the model
|
||
|
t = [time.time()]
|
||
|
ops = (all_ops[-1].outputs[0],
|
||
|
features_tensor,
|
||
|
label_op,
|
||
|
model.inputs['points'],
|
||
|
model.inputs['pools'],
|
||
|
model.inputs['in_batches'])
|
||
|
_, stacked_features, labels, all_points, all_pools, in_batches = self.sess.run(ops, {model.dropout_prob: 1.0})
|
||
|
t += [time.time()]
|
||
|
count += in_batches.shape[0]
|
||
|
|
||
|
# Stack all batches
|
||
|
max_ind = np.max(in_batches)
|
||
|
stacked_batches = []
|
||
|
for b_i, b in enumerate(in_batches):
|
||
|
stacked_batches += [b[b < max_ind - 0.5]*0+b_i]
|
||
|
stacked_batches = np.hstack(stacked_batches)
|
||
|
|
||
|
# Find batches at wanted layer
|
||
|
for l in range(model.config.num_layers - 1):
|
||
|
if l >= layer_idx:
|
||
|
break
|
||
|
stacked_batches = stacked_batches[all_pools[l][:, 0]]
|
||
|
|
||
|
# Get each example and update top_activations
|
||
|
for b_i, b in enumerate(in_batches):
|
||
|
b = b[b < max_ind - 0.5]
|
||
|
in_points = all_points[0][b]
|
||
|
features = stacked_features[stacked_batches == b_i]
|
||
|
points = all_points[layer_idx][stacked_batches == b_i]
|
||
|
if model.config.dataset in ['ShapeNetPart_multi', 'ModelNet40_classif']:
|
||
|
l = labels[b_i]
|
||
|
else:
|
||
|
l = np.argmax(np.bincount(labels[b]))
|
||
|
|
||
|
self.update_top_activations(features, labels[b_i], points, in_points, radius)
|
||
|
|
||
|
# Average timing
|
||
|
t += [time.time()]
|
||
|
mean_dt = 0.95 * mean_dt + 0.05 * (np.array(t[1:]) - np.array(t[:-1]))
|
||
|
|
||
|
# Display
|
||
|
if (t[-1] - last_display) > 1.0:
|
||
|
last_display = t[-1]
|
||
|
if model.config.dataset.startswith('S3DIS'):
|
||
|
completed = count / (model.config.validation_size * model.config.batch_num)
|
||
|
else:
|
||
|
completed = count / dataset.num_test
|
||
|
message = 'Vote {:d} : {:.1f}% (timings : {:4.2f} {:4.2f})'
|
||
|
print(message.format(v,
|
||
|
100 * completed,
|
||
|
1000 * (mean_dt[0]),
|
||
|
1000 * (mean_dt[1])))
|
||
|
#class_names = np.array([dataset.label_to_names[i] for i in range(dataset.num_classes)])
|
||
|
#print(class_names[self.top_classes[:, :20]].T)
|
||
|
|
||
|
except tf.errors.OutOfRangeError:
|
||
|
break
|
||
|
|
||
|
return relu_idx
|
||
|
|
||
|
def update_top_activations(self, features, label, l_points, input_points, radius, max_computed=60):
|
||
|
|
||
|
top_num = self.top_features.shape[0]
|
||
|
|
||
|
# Compute top indice for each feature
|
||
|
max_indices = np.argmax(features, axis=0)
|
||
|
|
||
|
# get top_point neighborhoods
|
||
|
for features_i, idx in enumerate(max_indices[:max_computed]):
|
||
|
if features[idx, features_i] <= self.top_features[-1, features_i]:
|
||
|
continue
|
||
|
if label in self.top_classes[:, features_i]:
|
||
|
ind0 = np.where(self.top_classes[:, features_i] == label)[0][0]
|
||
|
if features[idx, features_i] <= self.top_features[ind0, features_i]:
|
||
|
continue
|
||
|
elif ind0 < top_num - 1:
|
||
|
self.top_features[ind0:-1, features_i] = self.top_features[ind0+1:, features_i]
|
||
|
self.top_classes[ind0:-1, features_i] = self.top_classes[ind0+1:, features_i]
|
||
|
for next_i in range(ind0 + 1, top_num):
|
||
|
old_f = join(self.visu_path, self.fmt_str.format(features_i, next_i + 1))
|
||
|
new_f = join(self.visu_path, self.fmt_str.format(features_i, next_i))
|
||
|
if exists(old_f):
|
||
|
if exists(new_f):
|
||
|
remove(new_f)
|
||
|
rename(old_f, new_f)
|
||
|
|
||
|
# Find indice where new top should be placed
|
||
|
top_i = np.where(features[idx, features_i] > self.top_features[:, features_i])[0][0]
|
||
|
|
||
|
# Update top features
|
||
|
if top_i < top_num - 1:
|
||
|
self.top_features[top_i + 1:, features_i] = self.top_features[top_i:-1, features_i]
|
||
|
self.top_features[top_i, features_i] = features[idx, features_i]
|
||
|
self.top_classes[top_i + 1:, features_i] = self.top_classes[top_i:-1, features_i]
|
||
|
self.top_classes[top_i, features_i] = label
|
||
|
|
||
|
# Find in which batch lays the point
|
||
|
if self.saving:
|
||
|
|
||
|
# Get inputs
|
||
|
l_features = features[:, features_i]
|
||
|
point = l_points[idx, :]
|
||
|
dist = np.linalg.norm(input_points - point, axis=1)
|
||
|
influence = (radius - dist) / radius
|
||
|
|
||
|
# Project response on input cloud
|
||
|
if l_points.shape[0] == input_points.shape[0]:
|
||
|
responses = l_features
|
||
|
else:
|
||
|
tree = KDTree(l_points, leaf_size=50)
|
||
|
nn_k = min(l_points.shape[0], 10)
|
||
|
interp_dists, interp_inds = tree.query(input_points, nn_k, return_distance=True)
|
||
|
tukeys = np.square(1 - np.square(interp_dists / radius))
|
||
|
tukeys[interp_dists > radius] = 0
|
||
|
responses = np.sum(l_features[interp_inds] * tukeys, axis=1)
|
||
|
|
||
|
# Handle last examples
|
||
|
for next_i in range(top_num - 1, top_i, -1):
|
||
|
old_f = join(self.visu_path, self.fmt_str.format(features_i, next_i))
|
||
|
new_f = join(self.visu_path, self.fmt_str.format(features_i, next_i + 1))
|
||
|
if exists(old_f):
|
||
|
if exists(new_f):
|
||
|
remove(new_f)
|
||
|
rename(old_f, new_f)
|
||
|
|
||
|
# Save
|
||
|
filename = join(self.visu_path, self.fmt_str.format(features_i, top_i + 1))
|
||
|
write_ply(filename,
|
||
|
[input_points, influence, responses],
|
||
|
['x', 'y', 'z', 'influence', 'responses'])
|
||
|
|
||
|
def show_deformable_kernels_old(self, model, dataset, deform_idx=0):
|
||
|
|
||
|
##########################################
|
||
|
# First choose the visualized deformations
|
||
|
##########################################
|
||
|
|
||
|
# List all deformation ops
|
||
|
all_ops = [op for op in tf.get_default_graph().get_operations() if op.name.startswith('KernelPointNetwork')
|
||
|
and op.name.endswith('deformed_KP')]
|
||
|
|
||
|
print('\nPossible deformed indices:')
|
||
|
for i, t in enumerate(all_ops):
|
||
|
print(i, ': ', t.name)
|
||
|
|
||
|
# Chosen deformations
|
||
|
deformed_KP_tensor = all_ops[deform_idx].outputs[0]
|
||
|
|
||
|
# Layer index
|
||
|
layer_idx = int(all_ops[deform_idx].name.split('/')[1].split('_')[-1])
|
||
|
|
||
|
# Original kernel point positions
|
||
|
KP_vars = [v for v in tf.global_variables() if 'kernel_points' in v.name]
|
||
|
tmp = np.array(all_ops[deform_idx].name.split('/'))
|
||
|
test = []
|
||
|
for v in KP_vars:
|
||
|
cmp = np.array(v.name.split('/'))
|
||
|
l = min(len(cmp), len(tmp))
|
||
|
cmp = cmp[:l]
|
||
|
tmp = tmp[:l]
|
||
|
test += [np.sum(cmp == tmp)]
|
||
|
chosen_KP = np.argmax(test)
|
||
|
|
||
|
print('You chose to visualize the output of operation named: ' + all_ops[deform_idx].name)
|
||
|
|
||
|
print('\n****************************************************************************')
|
||
|
|
||
|
# Run model on all test examples
|
||
|
# ******************************
|
||
|
|
||
|
# Initialise iterator with test data
|
||
|
if model.config.dataset.startswith('S3DIS'):
|
||
|
self.sess.run(dataset.val_init_op)
|
||
|
else:
|
||
|
self.sess.run(dataset.test_init_op)
|
||
|
count = 0
|
||
|
|
||
|
while True:
|
||
|
try:
|
||
|
|
||
|
# Run one step of the model
|
||
|
t = [time.time()]
|
||
|
ops = (deformed_KP_tensor,
|
||
|
model.inputs['points'],
|
||
|
model.inputs['features'],
|
||
|
model.inputs['pools'],
|
||
|
model.inputs['in_batches'],
|
||
|
KP_vars)
|
||
|
stacked_deformed_KP, \
|
||
|
all_points, \
|
||
|
all_colors, \
|
||
|
all_pools, \
|
||
|
in_batches, \
|
||
|
original_KPs = self.sess.run(ops, {model.dropout_prob: 1.0})
|
||
|
t += [time.time()]
|
||
|
count += in_batches.shape[0]
|
||
|
|
||
|
# Stack all batches
|
||
|
max_ind = np.max(in_batches)
|
||
|
stacked_batches = []
|
||
|
for b_i, b in enumerate(in_batches):
|
||
|
stacked_batches += [b[b < max_ind - 0.5] * 0 + b_i]
|
||
|
stacked_batches = np.hstack(stacked_batches)
|
||
|
|
||
|
# Find batches at wanted layer
|
||
|
for l in range(model.config.num_layers - 1):
|
||
|
if l >= layer_idx:
|
||
|
break
|
||
|
stacked_batches = stacked_batches[all_pools[l][:, 0]]
|
||
|
|
||
|
# Get each example and update top_activations
|
||
|
in_points = []
|
||
|
in_colors = []
|
||
|
deformed_KP = []
|
||
|
points = []
|
||
|
lookuptrees = []
|
||
|
for b_i, b in enumerate(in_batches):
|
||
|
b = b[b < max_ind - 0.5]
|
||
|
in_points += [all_points[0][b]]
|
||
|
deformed_KP += [stacked_deformed_KP[stacked_batches == b_i]]
|
||
|
points += [all_points[layer_idx][stacked_batches == b_i]]
|
||
|
lookuptrees += [KDTree(points[-1])]
|
||
|
if all_colors.shape[1] == 4:
|
||
|
in_colors += [all_colors[b, 1:]]
|
||
|
else:
|
||
|
in_colors += [None]
|
||
|
|
||
|
print('New batch size : ', len(in_batches))
|
||
|
|
||
|
###########################
|
||
|
# Interactive visualization
|
||
|
###########################
|
||
|
|
||
|
# Create figure for features
|
||
|
fig1 = mlab.figure('Features', bgcolor=(1.0, 1.0, 1.0), size=(1280, 920))
|
||
|
fig1.scene.parallel_projection = False
|
||
|
|
||
|
# Indices
|
||
|
global obj_i, point_i, plots, offsets, p_scale, show_in_p, aim_point
|
||
|
p_scale = 0.03
|
||
|
obj_i = 0
|
||
|
point_i = 0
|
||
|
plots = {}
|
||
|
offsets = False
|
||
|
show_in_p = 2
|
||
|
aim_point = np.zeros((1, 3))
|
||
|
|
||
|
def picker_callback(picker):
|
||
|
""" Picker callback: this get called when on pick events.
|
||
|
"""
|
||
|
global plots, aim_point
|
||
|
|
||
|
if 'in_points' in plots:
|
||
|
if plots['in_points'].actor.actor._vtk_obj in [o._vtk_obj for o in picker.actors]:
|
||
|
point_rez = plots['in_points'].glyph.glyph_source.glyph_source.output.points.to_array().shape[0]
|
||
|
new_point_i = int(np.floor(picker.point_id / point_rez))
|
||
|
if new_point_i < len(plots['in_points'].mlab_source.points):
|
||
|
# Get closest point in the layer we are interested in
|
||
|
aim_point = plots['in_points'].mlab_source.points[new_point_i:new_point_i + 1]
|
||
|
update_scene()
|
||
|
|
||
|
if 'points' in plots:
|
||
|
if plots['points'].actor.actor._vtk_obj in [o._vtk_obj for o in picker.actors]:
|
||
|
point_rez = plots['points'].glyph.glyph_source.glyph_source.output.points.to_array().shape[0]
|
||
|
new_point_i = int(np.floor(picker.point_id / point_rez))
|
||
|
if new_point_i < len(plots['points'].mlab_source.points):
|
||
|
# Get closest point in the layer we are interested in
|
||
|
aim_point = plots['points'].mlab_source.points[new_point_i:new_point_i + 1]
|
||
|
update_scene()
|
||
|
|
||
|
def update_scene():
|
||
|
global plots, offsets, p_scale, show_in_p, aim_point, point_i
|
||
|
|
||
|
# Get the current view
|
||
|
v = mlab.view()
|
||
|
roll = mlab.roll()
|
||
|
|
||
|
# clear figure
|
||
|
for key in plots.keys():
|
||
|
plots[key].remove()
|
||
|
|
||
|
plots = {}
|
||
|
|
||
|
# Plot new data feature
|
||
|
p = points[obj_i]
|
||
|
|
||
|
# Rescale points for visu
|
||
|
p = (p * 1.5 / model.config.in_radius)
|
||
|
|
||
|
|
||
|
# Show point cloud
|
||
|
if show_in_p <= 1:
|
||
|
plots['points'] = mlab.points3d(p[:, 0],
|
||
|
p[:, 1],
|
||
|
p[:, 2],
|
||
|
resolution=8,
|
||
|
scale_factor=p_scale,
|
||
|
scale_mode='none',
|
||
|
color=(0, 1, 1),
|
||
|
figure=fig1)
|
||
|
|
||
|
if show_in_p >= 1:
|
||
|
|
||
|
# Get points and colors
|
||
|
in_p = in_points[obj_i]
|
||
|
in_p = (in_p * 1.5 / model.config.in_radius)
|
||
|
|
||
|
# Color point cloud if possible
|
||
|
in_c = in_colors[obj_i]
|
||
|
if in_c is not None:
|
||
|
|
||
|
# Primitives
|
||
|
scalars = np.arange(len(in_p)) # Key point: set an integer for each point
|
||
|
|
||
|
# Define color table (including alpha), which must be uint8 and [0,255]
|
||
|
colors = np.hstack((in_c, np.ones_like(in_c[:, :1])))
|
||
|
colors = (colors * 255).astype(np.uint8)
|
||
|
|
||
|
plots['in_points'] = mlab.points3d(in_p[:, 0],
|
||
|
in_p[:, 1],
|
||
|
in_p[:, 2],
|
||
|
scalars,
|
||
|
resolution=8,
|
||
|
scale_factor=p_scale*0.8,
|
||
|
scale_mode='none',
|
||
|
figure=fig1)
|
||
|
plots['in_points'].module_manager.scalar_lut_manager.lut.table = colors
|
||
|
|
||
|
else:
|
||
|
|
||
|
plots['in_points'] = mlab.points3d(in_p[:, 0],
|
||
|
in_p[:, 1],
|
||
|
in_p[:, 2],
|
||
|
resolution=8,
|
||
|
scale_factor=p_scale*0.8,
|
||
|
scale_mode='none',
|
||
|
figure=fig1)
|
||
|
|
||
|
|
||
|
# Get KP locations
|
||
|
rescaled_aim_point = aim_point * model.config.in_radius / 1.5
|
||
|
point_i = lookuptrees[obj_i].query(rescaled_aim_point, return_distance=False)[0][0]
|
||
|
if offsets:
|
||
|
KP = points[obj_i][point_i] + deformed_KP[obj_i][point_i]
|
||
|
scals = np.ones_like(KP[:, 0])
|
||
|
else:
|
||
|
KP = points[obj_i][point_i] + original_KPs[chosen_KP]
|
||
|
scals = np.zeros_like(KP[:, 0])
|
||
|
|
||
|
KP = (KP * 1.5 / model.config.in_radius)
|
||
|
|
||
|
plots['KP'] = mlab.points3d(KP[:, 0],
|
||
|
KP[:, 1],
|
||
|
KP[:, 2],
|
||
|
scals,
|
||
|
colormap='autumn',
|
||
|
resolution=8,
|
||
|
scale_factor=1.2*p_scale,
|
||
|
scale_mode='none',
|
||
|
vmin=0,
|
||
|
vmax=1,
|
||
|
figure=fig1)
|
||
|
|
||
|
|
||
|
if True:
|
||
|
plots['center'] = mlab.points3d(p[point_i, 0],
|
||
|
p[point_i, 1],
|
||
|
p[point_i, 2],
|
||
|
scale_factor=1.1*p_scale,
|
||
|
scale_mode='none',
|
||
|
color=(0, 1, 0),
|
||
|
figure=fig1)
|
||
|
|
||
|
# New title
|
||
|
plots['title'] = mlab.title(str(obj_i), color=(0, 0, 0), size=0.3, height=0.01)
|
||
|
text = '<--- (press g for previous)' + 50 * ' ' + '(press h for next) --->'
|
||
|
plots['text'] = mlab.text(0.01, 0.01, text, color=(0, 0, 0), width=0.98)
|
||
|
plots['orient'] = mlab.orientation_axes()
|
||
|
|
||
|
# Set the saved view
|
||
|
mlab.view(*v)
|
||
|
mlab.roll(roll)
|
||
|
|
||
|
return
|
||
|
|
||
|
def animate_kernel():
|
||
|
global plots, offsets, p_scale, show_in_p
|
||
|
|
||
|
# Get KP locations
|
||
|
|
||
|
KP_def = points[obj_i][point_i] + deformed_KP[obj_i][point_i]
|
||
|
KP_def = (KP_def * 1.5 / model.config.in_radius)
|
||
|
KP_def_color = (1, 0, 0)
|
||
|
|
||
|
KP_rigid = points[obj_i][point_i] + original_KPs[chosen_KP]
|
||
|
KP_rigid = (KP_rigid * 1.5 / model.config.in_radius)
|
||
|
KP_rigid_color = (1, 0.7, 0)
|
||
|
|
||
|
if offsets:
|
||
|
t_list = np.linspace(0, 1, 150, dtype=np.float32)
|
||
|
else:
|
||
|
t_list = np.linspace(1, 0, 150, dtype=np.float32)
|
||
|
|
||
|
@mlab.animate(delay=10)
|
||
|
def anim():
|
||
|
for t in t_list:
|
||
|
plots['KP'].mlab_source.set(x=t * KP_def[:, 0] + (1 - t) * KP_rigid[:, 0],
|
||
|
y=t * KP_def[:, 1] + (1 - t) * KP_rigid[:, 1],
|
||
|
z=t * KP_def[:, 2] + (1 - t) * KP_rigid[:, 2],
|
||
|
scalars=t * np.ones_like(KP_def[:, 0]))
|
||
|
|
||
|
yield
|
||
|
|
||
|
anim()
|
||
|
|
||
|
return
|
||
|
|
||
|
def keyboard_callback(vtk_obj, event):
|
||
|
global obj_i, point_i, offsets, p_scale, show_in_p
|
||
|
|
||
|
if vtk_obj.GetKeyCode() in ['b', 'B']:
|
||
|
p_scale /= 1.5
|
||
|
update_scene()
|
||
|
|
||
|
elif vtk_obj.GetKeyCode() in ['n', 'N']:
|
||
|
p_scale *= 1.5
|
||
|
update_scene()
|
||
|
|
||
|
if vtk_obj.GetKeyCode() in ['g', 'G']:
|
||
|
obj_i = (obj_i - 1) % len(deformed_KP)
|
||
|
point_i = 0
|
||
|
update_scene()
|
||
|
|
||
|
elif vtk_obj.GetKeyCode() in ['h', 'H']:
|
||
|
obj_i = (obj_i + 1) % len(deformed_KP)
|
||
|
point_i = 0
|
||
|
update_scene()
|
||
|
|
||
|
elif vtk_obj.GetKeyCode() in ['k', 'K']:
|
||
|
offsets = not offsets
|
||
|
animate_kernel()
|
||
|
|
||
|
elif vtk_obj.GetKeyCode() in ['z', 'Z']:
|
||
|
show_in_p = (show_in_p + 1) % 3
|
||
|
update_scene()
|
||
|
|
||
|
elif vtk_obj.GetKeyCode() in ['0']:
|
||
|
|
||
|
print('Saving')
|
||
|
|
||
|
# Find a new name
|
||
|
file_i = 0
|
||
|
file_name = 'KP_{:03d}.ply'.format(file_i)
|
||
|
files = [f for f in listdir('KP_clouds') if f.endswith('.ply')]
|
||
|
while file_name in files:
|
||
|
file_i += 1
|
||
|
file_name = 'KP_{:03d}.ply'.format(file_i)
|
||
|
|
||
|
KP_deform = points[obj_i][point_i] + deformed_KP[obj_i][point_i]
|
||
|
KP_normal = points[obj_i][point_i] + original_KPs[chosen_KP]
|
||
|
|
||
|
# Save
|
||
|
write_ply(join('KP_clouds', file_name),
|
||
|
[in_points[obj_i], in_colors[obj_i]],
|
||
|
['x', 'y', 'z', 'red', 'green', 'blue'])
|
||
|
write_ply(join('KP_clouds', 'KP_{:03d}_deform.ply'.format(file_i)),
|
||
|
[KP_deform],
|
||
|
['x', 'y', 'z'])
|
||
|
write_ply(join('KP_clouds', 'KP_{:03d}_normal.ply'.format(file_i)),
|
||
|
[KP_normal],
|
||
|
['x', 'y', 'z'])
|
||
|
print('OK')
|
||
|
|
||
|
return
|
||
|
|
||
|
# Draw a first plot
|
||
|
pick_func = fig1.on_mouse_pick(picker_callback)
|
||
|
pick_func.tolerance = 0.01
|
||
|
update_scene()
|
||
|
fig1.scene.interactor.add_observer('KeyPressEvent', keyboard_callback)
|
||
|
mlab.show()
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
except tf.errors.OutOfRangeError:
|
||
|
break
|
||
|
|
||
|
def show_effective_recep_field(self, model, dataset, relu_idx=0):
|
||
|
|
||
|
###################################################
|
||
|
# First add a modulation variable on input features
|
||
|
###################################################
|
||
|
|
||
|
# Tensorflow random seed
|
||
|
random_seed = 42
|
||
|
|
||
|
# Create a modulated input feature op
|
||
|
with tf.variable_scope('input_modulations'):
|
||
|
initial = tf.constant(0., shape=[200000, 1])
|
||
|
input_modulations_var = tf.Variable(initial, name='alphas')
|
||
|
input_modulations = 2 * tf.sigmoid(input_modulations_var)
|
||
|
assert_op = tf.assert_less(tf.shape(model.inputs['features'])[0], tf.shape(input_modulations)[0])
|
||
|
with tf.control_dependencies([assert_op]):
|
||
|
modulated_input = model.inputs['features'] * input_modulations[:tf.shape(model.inputs['features'])[0]]
|
||
|
modulated_input = tf.identity(modulated_input, name='modulated_features')
|
||
|
|
||
|
print('*******************************************')
|
||
|
|
||
|
# Swap the op with the normal input features
|
||
|
for op in tf.get_default_graph().get_operations():
|
||
|
|
||
|
if 'input_modulations' in op.name:
|
||
|
continue
|
||
|
|
||
|
if model.inputs['features'].name in [in_t.name for in_t in op.inputs]:
|
||
|
input_list = []
|
||
|
for in_t in op.inputs:
|
||
|
if in_t.name == model.inputs['features'].name:
|
||
|
input_list += [modulated_input]
|
||
|
else:
|
||
|
input_list += [in_t]
|
||
|
print('swapping op ', op.name)
|
||
|
print('old inputs ', [in_t.name for in_t in op.inputs])
|
||
|
print('new inputs ', [in_t.name for in_t in input_list])
|
||
|
ge.swap_inputs(op, input_list)
|
||
|
|
||
|
print('*******************************************')
|
||
|
|
||
|
##########################
|
||
|
# Create the ERF optimizer
|
||
|
##########################
|
||
|
|
||
|
# This optimizer only computes gradients for the feature modulation variables. We set the ERF loss, which
|
||
|
# consists of modifying the features in one location a the wanted layer
|
||
|
|
||
|
with tf.variable_scope('ERF_loss'):
|
||
|
|
||
|
# List all relu ops
|
||
|
all_ops = [op for op in tf.get_default_graph().get_operations() if op.name.startswith('KernelPointNetwork')
|
||
|
and op.name.endswith('LeakyRelu')]
|
||
|
|
||
|
# Print the chosen one
|
||
|
features_tensor = all_ops[relu_idx].outputs[0]
|
||
|
|
||
|
# Get parameters
|
||
|
layer_idx = int(features_tensor.name.split('/')[1][6:])
|
||
|
if 'strided' in all_ops[relu_idx].name and not ('strided' in all_ops[relu_idx + 1].name):
|
||
|
layer_idx += 1
|
||
|
features_dim = int(features_tensor.shape[1])
|
||
|
radius = model.config.first_subsampling_dl * model.config.density_parameter * (2 ** layer_idx)
|
||
|
|
||
|
print('You chose to visualize the output of operation named: ' + all_ops[relu_idx].name)
|
||
|
print('It contains {:d} features.'.format(int(features_tensor.shape[1])))
|
||
|
|
||
|
print('\nPossible Relu indices:')
|
||
|
for i, t in enumerate(all_ops):
|
||
|
print(i, ': ', t.name)
|
||
|
|
||
|
print('\n****************************************************************************')
|
||
|
|
||
|
# Get the receptive field of a random point
|
||
|
N = tf.shape(features_tensor)[0]
|
||
|
#random_ind = tf.random_uniform([1], minval=0, maxval=N, dtype=np.int32, seed=random_seed)[0]
|
||
|
#chosen_i_holder = tf.placeholder(tf.int32, name='chosen_ind')
|
||
|
aimed_coordinates = tf.placeholder(tf.float32, shape=(1, 3), name='aimed_coordinates')
|
||
|
d2 = tf.reduce_sum(tf.square(model.inputs['points'][layer_idx] - aimed_coordinates), axis=1)
|
||
|
chosen_i_tf = tf.argmin(d2, output_type=tf.int32)
|
||
|
|
||
|
#test1 = tf.multiply(features_tensor, 2.0, name='test1')
|
||
|
#test2 = tf.multiply(features_tensor, 2.0, name='test2')
|
||
|
|
||
|
# Gradient scaling operation
|
||
|
@tf.custom_gradient
|
||
|
def scale_grad_layer(x):
|
||
|
def scaled_grad(dy):
|
||
|
p_op = tf.print(x.name,
|
||
|
tf.reduce_mean(tf.abs(x)),
|
||
|
tf.reduce_mean(tf.abs(dy)),
|
||
|
output_stream=sys.stdout)
|
||
|
with tf.control_dependencies([p_op]):
|
||
|
new_dy = 1.0 * dy
|
||
|
return new_dy
|
||
|
return tf.identity(x), scaled_grad
|
||
|
|
||
|
#test2 = scale_grad_layer(test2)
|
||
|
|
||
|
# Get the tensor of error for these features (one for the chosen point, zero for the rest)
|
||
|
chosen_f_tf = tf.placeholder(tf.int32, name='feature_ind')
|
||
|
ERF_error = tf.expand_dims(tf.cast(tf.equal(tf.range(N), chosen_i_tf), tf.float32), 1)
|
||
|
ERF_error *= tf.expand_dims(tf.cast(tf.equal(tf.range(features_dim), chosen_f_tf), tf.float32), 0)
|
||
|
|
||
|
# Get objective for the features (with a stop gradient so that we can get a gradient on the loss)
|
||
|
objective_features = features_tensor + ERF_error
|
||
|
objective_features = tf.stop_gradient(objective_features)
|
||
|
|
||
|
# Loss is the error but with the features that can be learned to correct it
|
||
|
ERF_loss = tf.reduce_sum(tf.square(objective_features - features_tensor))
|
||
|
|
||
|
|
||
|
with tf.variable_scope('ERF_optimizer'):
|
||
|
|
||
|
# Create the gradient descent optimizer with a dummy learning rate
|
||
|
optimizer = tf.train.GradientDescentOptimizer(1.0)
|
||
|
|
||
|
# Get the gradients with respect to the modulation variable
|
||
|
ERF_var_grads = optimizer.compute_gradients(ERF_loss, var_list=[input_modulations_var])
|
||
|
|
||
|
# Gradient of the modulations
|
||
|
ERF_train_op = optimizer.apply_gradients(ERF_var_grads)
|
||
|
|
||
|
################################
|
||
|
# Run model on all test examples
|
||
|
################################
|
||
|
|
||
|
# Init our modulation variable
|
||
|
self.sess.run(tf.variables_initializer([input_modulations_var]))
|
||
|
|
||
|
# Initialise iterator with test data
|
||
|
self.sess.run(dataset.test_init_op)
|
||
|
count = 0
|
||
|
|
||
|
global plots, p_scale, show_in_p, remove_h, aim_point
|
||
|
aim_point = np.zeros((1, 3), dtype=np.float32)
|
||
|
remove_h = 1.05
|
||
|
p_scale = 0.1
|
||
|
plots = {}
|
||
|
show_in_p = False
|
||
|
|
||
|
global points, in_points, grad_values, chosen_point, in_colors
|
||
|
points = None
|
||
|
in_points = np.zeros((0, 3))
|
||
|
grad_values = None
|
||
|
chosen_point = None
|
||
|
in_colors = None
|
||
|
|
||
|
###########################
|
||
|
# Interactive visualization
|
||
|
###########################
|
||
|
|
||
|
# Create figure for features
|
||
|
fig1 = mlab.figure('Features', bgcolor=(0.5, 0.5, 0.5), size=(640, 480))
|
||
|
fig1.scene.parallel_projection = False
|
||
|
|
||
|
# Indices
|
||
|
|
||
|
def update_ERF(only_points=False):
|
||
|
global points, in_points, grad_values, chosen_point, aim_point, in_colors
|
||
|
|
||
|
# Generate clouds until we effectively changed
|
||
|
if only_points:
|
||
|
for i in range(50):
|
||
|
all_points = self.sess.run(model.inputs['points'])
|
||
|
if all_points[0].shape[0] != in_points.shape[0]:
|
||
|
break
|
||
|
|
||
|
sum_grads = 0
|
||
|
if only_points:
|
||
|
num_tries = 1
|
||
|
else:
|
||
|
num_tries = 10
|
||
|
|
||
|
for test_i in range(num_tries):
|
||
|
|
||
|
print('Updating ERF {:.0f}%'.format((test_i + 1) * 100 / num_tries))
|
||
|
rand_f_i = np.random.randint(features_dim)
|
||
|
|
||
|
# Reset input modulation variable
|
||
|
reset_op = input_modulations_var.assign(tf.zeros_like(input_modulations_var))
|
||
|
self.sess.run(reset_op)
|
||
|
|
||
|
# Apply gradient to input modulations
|
||
|
t = [time.time()]
|
||
|
ops = (ERF_train_op,
|
||
|
chosen_i_tf,
|
||
|
input_modulations_var,
|
||
|
model.inputs['points'],
|
||
|
model.inputs['features'],
|
||
|
model.inputs['pools'],
|
||
|
model.inputs['in_batches'])
|
||
|
feed_dict = {aimed_coordinates: aim_point,
|
||
|
chosen_f_tf: rand_f_i,
|
||
|
model.dropout_prob: 1.0}
|
||
|
_, chosen_i, new_mods, all_points, all_colors, all_pools, in_batches = self.sess.run(ops, feed_dict)
|
||
|
t += [time.time()]
|
||
|
|
||
|
# Get the new value of the modulations
|
||
|
sum_grads += np.abs(self.sess.run(input_modulations_var))
|
||
|
|
||
|
grad = sum_grads / num_tries
|
||
|
|
||
|
# Stack all batches
|
||
|
max_ind = np.max(in_batches)
|
||
|
stacked_batches = []
|
||
|
for b_i, b in enumerate(in_batches):
|
||
|
stacked_batches += [b[b < max_ind - 0.5] * 0 + b_i]
|
||
|
stacked_batches = np.hstack(stacked_batches)
|
||
|
|
||
|
# Find batches at wanted layer
|
||
|
for l in range(model.config.num_layers - 1):
|
||
|
if l >= layer_idx:
|
||
|
break
|
||
|
stacked_batches = stacked_batches[all_pools[l][:, 0]]
|
||
|
|
||
|
# Get each example and update top_activations
|
||
|
for b_i, b in enumerate(in_batches):
|
||
|
b = b[b < max_ind - 0.5]
|
||
|
in_points = all_points[0][b]
|
||
|
in_colors = all_colors[b, 1:]
|
||
|
points = all_points[layer_idx][stacked_batches == b_i]
|
||
|
grad_values = grad[b]
|
||
|
|
||
|
chosen_point = all_points[layer_idx][chosen_i]
|
||
|
|
||
|
def update_scene():
|
||
|
global plots, p_scale, show_in_p, remove_h
|
||
|
global points, in_points, grad_values, chosen_point
|
||
|
|
||
|
# Get the current view
|
||
|
v = mlab.view()
|
||
|
roll = mlab.roll()
|
||
|
|
||
|
# clear figure
|
||
|
for key in plots.keys():
|
||
|
plots[key].remove()
|
||
|
|
||
|
plots = {}
|
||
|
|
||
|
# Plot new data feature
|
||
|
in_p = in_points
|
||
|
p = points
|
||
|
p0 = chosen_point
|
||
|
responses = 100 * np.abs(np.ravel(grad_values))
|
||
|
#xresponses = responses ** (1/2)
|
||
|
|
||
|
# Remove roof
|
||
|
if 0.0 < remove_h < 1.0:
|
||
|
floor_h = np.min(in_p[:, 2])
|
||
|
ceil_h = np.max(in_p[:, 2])
|
||
|
threshold = floor_h + (ceil_h - floor_h) * remove_h
|
||
|
responses = responses[in_p[:, 2] < threshold]
|
||
|
in_p = in_p[in_p[:, 2] < threshold]
|
||
|
p = p[p[:, 2] < threshold]
|
||
|
|
||
|
# Rescale responses
|
||
|
min_response, max_response = np.min(responses), np.max(responses)
|
||
|
|
||
|
# Show point cloud
|
||
|
if show_in_p:
|
||
|
plots['points'] = mlab.points3d(p[:, 0],
|
||
|
p[:, 1],
|
||
|
p[:, 2],
|
||
|
resolution=8,
|
||
|
scale_factor=p_scale,
|
||
|
scale_mode='none',
|
||
|
color=(0, 1, 1),
|
||
|
figure=fig1)
|
||
|
|
||
|
plots['in_points'] = mlab.points3d(in_p[:, 0],
|
||
|
in_p[:, 1],
|
||
|
in_p[:, 2],
|
||
|
responses,
|
||
|
resolution=8,
|
||
|
scale_factor=p_scale * 0.8,
|
||
|
scale_mode='none',
|
||
|
vmin=0.1,
|
||
|
vmax=1.5,
|
||
|
figure=fig1)
|
||
|
|
||
|
plots['center'] = mlab.points3d(p0[0],
|
||
|
p0[1],
|
||
|
p0[2],
|
||
|
scale_factor=1.5 * p_scale,
|
||
|
scale_mode='none',
|
||
|
color=(0, 0, 0),
|
||
|
figure=fig1)
|
||
|
|
||
|
# New title
|
||
|
plots['title'] = mlab.title(str(int(100*remove_h)) + '%', color=(0, 0, 0), size=0.3, height=0.01)
|
||
|
text = '<--- (press g to remove ceiling)' + 50 * ' ' + '(press h to add ceiling) --->'
|
||
|
plots['text'] = mlab.text(0.01, 0.01, text, color=(0, 0, 0), width=0.98)
|
||
|
plots['orient'] = mlab.orientation_axes()
|
||
|
|
||
|
# Set the saved view
|
||
|
mlab.view(*v)
|
||
|
mlab.roll(roll)
|
||
|
|
||
|
return
|
||
|
|
||
|
def picker_callback(picker):
|
||
|
""" Picker callback: this get called when on pick events.
|
||
|
"""
|
||
|
global plots, aim_point, in_points
|
||
|
|
||
|
if plots['in_points'].actor.actor._vtk_obj in [o._vtk_obj for o in picker.actors]:
|
||
|
point_rez = plots['in_points'].glyph.glyph_source.glyph_source.output.points.to_array().shape[0]
|
||
|
new_point_i = int(np.floor(picker.point_id / point_rez))
|
||
|
if new_point_i < len(plots['in_points'].mlab_source.points):
|
||
|
|
||
|
# Get closest point in the layer we are interested in
|
||
|
aim_point = plots['in_points'].mlab_source.points[new_point_i:new_point_i + 1]
|
||
|
update_ERF()
|
||
|
update_scene()
|
||
|
|
||
|
def keyboard_callback(vtk_obj, event):
|
||
|
global remove_h, p_scale, show_in_p
|
||
|
global in_points, grad_values, chosen_point, in_colors
|
||
|
|
||
|
print(vtk_obj.GetKeyCode())
|
||
|
|
||
|
|
||
|
if vtk_obj.GetKeyCode() in ['b', 'B']:
|
||
|
p_scale /= 1.5
|
||
|
update_scene()
|
||
|
|
||
|
elif vtk_obj.GetKeyCode() in ['n', 'N']:
|
||
|
p_scale *= 1.5
|
||
|
update_scene()
|
||
|
|
||
|
if vtk_obj.GetKeyCode() in ['g', 'G']:
|
||
|
if remove_h > 0.0:
|
||
|
remove_h -= 0.1
|
||
|
update_scene()
|
||
|
|
||
|
elif vtk_obj.GetKeyCode() in ['h', 'H']:
|
||
|
if remove_h < 1.0:
|
||
|
remove_h += 0.1
|
||
|
update_ERF()
|
||
|
update_scene()
|
||
|
|
||
|
elif vtk_obj.GetKeyCode() in ['z', 'Z']:
|
||
|
show_in_p = not show_in_p
|
||
|
update_scene()
|
||
|
|
||
|
elif vtk_obj.GetKeyCode() in ['x', 'X']:
|
||
|
# Reset potentials
|
||
|
dataset.potentials['ERF'] = []
|
||
|
dataset.min_potentials['ERF'] = []
|
||
|
for i, tree in enumerate(dataset.input_trees['test']):
|
||
|
dataset.potentials['ERF'] += [np.random.rand(tree.data.shape[0]) * 1e-3]
|
||
|
dataset.min_potentials['ERF'] += [float(np.min(dataset.potentials['ERF'][-1]))]
|
||
|
|
||
|
# Update figure
|
||
|
update_ERF(only_points=True)
|
||
|
update_scene()
|
||
|
|
||
|
elif vtk_obj.GetKeyCode() in ['0']:
|
||
|
|
||
|
print('Saving')
|
||
|
|
||
|
# Find a new name
|
||
|
file_i = 0
|
||
|
file_name = 'ERF_{:03d}.ply'.format(file_i)
|
||
|
files = [f for f in listdir('ERF_clouds') if f.endswith('.ply')]
|
||
|
while file_name in files:
|
||
|
file_i += 1
|
||
|
file_name = 'ERF_{:03d}.ply'.format(file_i)
|
||
|
|
||
|
# Save
|
||
|
responses = 100 * np.abs(np.ravel(grad_values))
|
||
|
write_ply(join('ERF_clouds', file_name),
|
||
|
[in_points, in_colors, responses],
|
||
|
['x', 'y', 'z', 'red', 'green', 'blue', 'erf'])
|
||
|
write_ply(join('ERF_clouds', 'ERF_{:03d}_center.ply'.format(file_i)),
|
||
|
[chosen_point.reshape([1, -1])],
|
||
|
['x', 'y', 'z'])
|
||
|
print('OK')
|
||
|
|
||
|
return
|
||
|
|
||
|
# Draw a first plot
|
||
|
pick_func = fig1.on_mouse_pick(picker_callback)
|
||
|
pick_func.tolerance = 0.01
|
||
|
update_ERF(only_points=True)
|
||
|
update_scene()
|
||
|
fig1.scene.interactor.add_observer('KeyPressEvent', keyboard_callback)
|
||
|
mlab.show()
|
||
|
|
||
|
def show_deformable_kernels(self, net, loader, config, deform_idx=0):
|
||
|
"""
|
||
|
Show some inference with deformable kernels
|
||
|
"""
|
||
|
|
||
|
##########################################
|
||
|
# First choose the visualized deformations
|
||
|
##########################################
|
||
|
|
||
|
print('\nList of the deformable convolution available (chosen one highlighted in green)')
|
||
|
fmt_str = ' {:}{:2d} > KPConv(r={:.3f}, Din={:d}, Dout={:d}){:}'
|
||
|
deform_convs = []
|
||
|
for m in net.modules():
|
||
|
if isinstance(m, KPConv) and m.deformable:
|
||
|
if len(deform_convs) == deform_idx:
|
||
|
color = bcolors.OKGREEN
|
||
|
else:
|
||
|
color = bcolors.FAIL
|
||
|
print(fmt_str.format(color, len(deform_convs), m.radius, m.in_channels, m.out_channels, bcolors.ENDC))
|
||
|
deform_convs.append(m)
|
||
|
|
||
|
################
|
||
|
# Initialization
|
||
|
################
|
||
|
|
||
|
print('\n****************************************************\n')
|
||
|
|
||
|
# Loop variables
|
||
|
t0 = time.time()
|
||
|
t = [time.time()]
|
||
|
last_display = time.time()
|
||
|
mean_dt = np.zeros(1)
|
||
|
count = 0
|
||
|
|
||
|
# Start training loop
|
||
|
for epoch in range(config.max_epoch):
|
||
|
|
||
|
for batch in loader:
|
||
|
|
||
|
##################
|
||
|
# Processing batch
|
||
|
##################
|
||
|
|
||
|
# New time
|
||
|
t = t[-1:]
|
||
|
t += [time.time()]
|
||
|
|
||
|
if 'cuda' in self.device.type:
|
||
|
batch.to(self.device)
|
||
|
|
||
|
# Forward pass
|
||
|
outputs = net(batch, config)
|
||
|
original_KP = deform_convs[deform_idx].kernel_points.cpu().detach().numpy()
|
||
|
stacked_deformed_KP = deform_convs[deform_idx].deformed_KP.cpu().detach().numpy()
|
||
|
count += batch.lengths[0].shape[0]
|
||
|
|
||
|
if 'cuda' in self.device.type:
|
||
|
torch.cuda.synchronize(self.device)
|
||
|
|
||
|
# Find layer
|
||
|
l = None
|
||
|
for i, p in enumerate(batch.points):
|
||
|
if p.shape[0] == stacked_deformed_KP.shape[0]:
|
||
|
l = i
|
||
|
|
||
|
t += [time.time()]
|
||
|
|
||
|
# Get data
|
||
|
in_points = []
|
||
|
in_colors = []
|
||
|
deformed_KP = []
|
||
|
points = []
|
||
|
lookuptrees = []
|
||
|
i0 = 0
|
||
|
for b_i, length in enumerate(batch.lengths[0]):
|
||
|
in_points.append(batch.points[0][i0:i0 + length].cpu().detach().numpy())
|
||
|
if batch.features.shape[1] == 4:
|
||
|
in_colors.append(batch.features[i0:i0 + length, 1:].cpu().detach().numpy())
|
||
|
else:
|
||
|
in_colors.append(None)
|
||
|
i0 += length
|
||
|
|
||
|
i0 = 0
|
||
|
for b_i, length in enumerate(batch.lengths[l]):
|
||
|
points.append(batch.points[l][i0:i0 + length].cpu().detach().numpy())
|
||
|
deformed_KP.append(stacked_deformed_KP[i0:i0 + length])
|
||
|
lookuptrees.append(KDTree(points[-1]))
|
||
|
i0 += length
|
||
|
|
||
|
###########################
|
||
|
# Interactive visualization
|
||
|
###########################
|
||
|
|
||
|
# Create figure for features
|
||
|
fig1 = mlab.figure('Deformations', bgcolor=(1.0, 1.0, 1.0), size=(1280, 920))
|
||
|
fig1.scene.parallel_projection = False
|
||
|
|
||
|
# Indices
|
||
|
global obj_i, point_i, plots, offsets, p_scale, show_in_p, aim_point
|
||
|
p_scale = 0.03
|
||
|
obj_i = 0
|
||
|
point_i = 0
|
||
|
plots = {}
|
||
|
offsets = False
|
||
|
show_in_p = 2
|
||
|
aim_point = np.zeros((1, 3))
|
||
|
|
||
|
def picker_callback(picker):
|
||
|
""" Picker callback: this get called when on pick events.
|
||
|
"""
|
||
|
global plots, aim_point
|
||
|
|
||
|
if 'in_points' in plots:
|
||
|
if plots['in_points'].actor.actor._vtk_obj in [o._vtk_obj for o in picker.actors]:
|
||
|
point_rez = plots['in_points'].glyph.glyph_source.glyph_source.output.points.to_array().shape[0]
|
||
|
new_point_i = int(np.floor(picker.point_id / point_rez))
|
||
|
if new_point_i < len(plots['in_points'].mlab_source.points):
|
||
|
# Get closest point in the layer we are interested in
|
||
|
aim_point = plots['in_points'].mlab_source.points[new_point_i:new_point_i + 1]
|
||
|
update_scene()
|
||
|
|
||
|
if 'points' in plots:
|
||
|
if plots['points'].actor.actor._vtk_obj in [o._vtk_obj for o in picker.actors]:
|
||
|
point_rez = plots['points'].glyph.glyph_source.glyph_source.output.points.to_array().shape[0]
|
||
|
new_point_i = int(np.floor(picker.point_id / point_rez))
|
||
|
if new_point_i < len(plots['points'].mlab_source.points):
|
||
|
# Get closest point in the layer we are interested in
|
||
|
aim_point = plots['points'].mlab_source.points[new_point_i:new_point_i + 1]
|
||
|
update_scene()
|
||
|
|
||
|
def update_scene():
|
||
|
global plots, offsets, p_scale, show_in_p, aim_point, point_i
|
||
|
|
||
|
# Get the current view
|
||
|
v = mlab.view()
|
||
|
roll = mlab.roll()
|
||
|
|
||
|
# clear figure
|
||
|
for key in plots.keys():
|
||
|
plots[key].remove()
|
||
|
|
||
|
plots = {}
|
||
|
|
||
|
# Plot new data feature
|
||
|
p = points[obj_i]
|
||
|
|
||
|
# Rescale points for visu
|
||
|
p = (p * 1.5 / config.in_radius)
|
||
|
|
||
|
|
||
|
# Show point cloud
|
||
|
if show_in_p <= 1:
|
||
|
plots['points'] = mlab.points3d(p[:, 0],
|
||
|
p[:, 1],
|
||
|
p[:, 2],
|
||
|
resolution=8,
|
||
|
scale_factor=p_scale,
|
||
|
scale_mode='none',
|
||
|
color=(0, 1, 1),
|
||
|
figure=fig1)
|
||
|
|
||
|
if show_in_p >= 1:
|
||
|
|
||
|
# Get points and colors
|
||
|
in_p = in_points[obj_i]
|
||
|
in_p = (in_p * 1.5 / config.in_radius)
|
||
|
|
||
|
# Color point cloud if possible
|
||
|
in_c = in_colors[obj_i]
|
||
|
if in_c is not None:
|
||
|
|
||
|
# Primitives
|
||
|
scalars = np.arange(len(in_p)) # Key point: set an integer for each point
|
||
|
|
||
|
# Define color table (including alpha), which must be uint8 and [0,255]
|
||
|
colors = np.hstack((in_c, np.ones_like(in_c[:, :1])))
|
||
|
colors = (colors * 255).astype(np.uint8)
|
||
|
|
||
|
plots['in_points'] = mlab.points3d(in_p[:, 0],
|
||
|
in_p[:, 1],
|
||
|
in_p[:, 2],
|
||
|
scalars,
|
||
|
resolution=8,
|
||
|
scale_factor=p_scale*0.8,
|
||
|
scale_mode='none',
|
||
|
figure=fig1)
|
||
|
plots['in_points'].module_manager.scalar_lut_manager.lut.table = colors
|
||
|
|
||
|
else:
|
||
|
|
||
|
plots['in_points'] = mlab.points3d(in_p[:, 0],
|
||
|
in_p[:, 1],
|
||
|
in_p[:, 2],
|
||
|
resolution=8,
|
||
|
scale_factor=p_scale*0.8,
|
||
|
scale_mode='none',
|
||
|
figure=fig1)
|
||
|
|
||
|
|
||
|
# Get KP locations
|
||
|
rescaled_aim_point = aim_point * config.in_radius / 1.5
|
||
|
point_i = lookuptrees[obj_i].query(rescaled_aim_point, return_distance=False)[0][0]
|
||
|
if offsets:
|
||
|
KP = points[obj_i][point_i] + deformed_KP[obj_i][point_i]
|
||
|
scals = np.ones_like(KP[:, 0])
|
||
|
else:
|
||
|
KP = points[obj_i][point_i] + original_KP
|
||
|
scals = np.zeros_like(KP[:, 0])
|
||
|
|
||
|
KP = (KP * 1.5 / config.in_radius)
|
||
|
|
||
|
plots['KP'] = mlab.points3d(KP[:, 0],
|
||
|
KP[:, 1],
|
||
|
KP[:, 2],
|
||
|
scals,
|
||
|
colormap='autumn',
|
||
|
resolution=8,
|
||
|
scale_factor=1.2*p_scale,
|
||
|
scale_mode='none',
|
||
|
vmin=0,
|
||
|
vmax=1,
|
||
|
figure=fig1)
|
||
|
|
||
|
|
||
|
if True:
|
||
|
plots['center'] = mlab.points3d(p[point_i, 0],
|
||
|
p[point_i, 1],
|
||
|
p[point_i, 2],
|
||
|
scale_factor=1.1*p_scale,
|
||
|
scale_mode='none',
|
||
|
color=(0, 1, 0),
|
||
|
figure=fig1)
|
||
|
|
||
|
# New title
|
||
|
plots['title'] = mlab.title(str(obj_i), color=(0, 0, 0), size=0.3, height=0.01)
|
||
|
text = '<--- (press g for previous)' + 50 * ' ' + '(press h for next) --->'
|
||
|
plots['text'] = mlab.text(0.01, 0.01, text, color=(0, 0, 0), width=0.98)
|
||
|
plots['orient'] = mlab.orientation_axes()
|
||
|
|
||
|
# Set the saved view
|
||
|
mlab.view(*v)
|
||
|
mlab.roll(roll)
|
||
|
|
||
|
return
|
||
|
|
||
|
def animate_kernel():
|
||
|
global plots, offsets, p_scale, show_in_p
|
||
|
|
||
|
# Get KP locations
|
||
|
|
||
|
KP_def = points[obj_i][point_i] + deformed_KP[obj_i][point_i]
|
||
|
KP_def = (KP_def * 1.5 / config.in_radius)
|
||
|
KP_def_color = (1, 0, 0)
|
||
|
|
||
|
KP_rigid = points[obj_i][point_i] + original_KP
|
||
|
KP_rigid = (KP_rigid * 1.5 / config.in_radius)
|
||
|
KP_rigid_color = (1, 0.7, 0)
|
||
|
|
||
|
if offsets:
|
||
|
t_list = np.linspace(0, 1, 150, dtype=np.float32)
|
||
|
else:
|
||
|
t_list = np.linspace(1, 0, 150, dtype=np.float32)
|
||
|
|
||
|
@mlab.animate(delay=10)
|
||
|
def anim():
|
||
|
for t in t_list:
|
||
|
plots['KP'].mlab_source.set(x=t * KP_def[:, 0] + (1 - t) * KP_rigid[:, 0],
|
||
|
y=t * KP_def[:, 1] + (1 - t) * KP_rigid[:, 1],
|
||
|
z=t * KP_def[:, 2] + (1 - t) * KP_rigid[:, 2],
|
||
|
scalars=t * np.ones_like(KP_def[:, 0]))
|
||
|
|
||
|
yield
|
||
|
|
||
|
anim()
|
||
|
|
||
|
return
|
||
|
|
||
|
def keyboard_callback(vtk_obj, event):
|
||
|
global obj_i, point_i, offsets, p_scale, show_in_p
|
||
|
|
||
|
if vtk_obj.GetKeyCode() in ['b', 'B']:
|
||
|
p_scale /= 1.5
|
||
|
update_scene()
|
||
|
|
||
|
elif vtk_obj.GetKeyCode() in ['n', 'N']:
|
||
|
p_scale *= 1.5
|
||
|
update_scene()
|
||
|
|
||
|
if vtk_obj.GetKeyCode() in ['g', 'G']:
|
||
|
obj_i = (obj_i - 1) % len(deformed_KP)
|
||
|
point_i = 0
|
||
|
update_scene()
|
||
|
|
||
|
elif vtk_obj.GetKeyCode() in ['h', 'H']:
|
||
|
obj_i = (obj_i + 1) % len(deformed_KP)
|
||
|
point_i = 0
|
||
|
update_scene()
|
||
|
|
||
|
elif vtk_obj.GetKeyCode() in ['k', 'K']:
|
||
|
offsets = not offsets
|
||
|
animate_kernel()
|
||
|
|
||
|
elif vtk_obj.GetKeyCode() in ['z', 'Z']:
|
||
|
show_in_p = (show_in_p + 1) % 3
|
||
|
update_scene()
|
||
|
|
||
|
elif vtk_obj.GetKeyCode() in ['0']:
|
||
|
|
||
|
print('Saving')
|
||
|
|
||
|
# Find a new name
|
||
|
file_i = 0
|
||
|
file_name = 'KP_{:03d}.ply'.format(file_i)
|
||
|
files = [f for f in listdir('KP_clouds') if f.endswith('.ply')]
|
||
|
while file_name in files:
|
||
|
file_i += 1
|
||
|
file_name = 'KP_{:03d}.ply'.format(file_i)
|
||
|
|
||
|
KP_deform = points[obj_i][point_i] + deformed_KP[obj_i][point_i]
|
||
|
KP_normal = points[obj_i][point_i] + original_KP
|
||
|
|
||
|
# Save
|
||
|
write_ply(join('KP_clouds', file_name),
|
||
|
[in_points[obj_i], in_colors[obj_i]],
|
||
|
['x', 'y', 'z', 'red', 'green', 'blue'])
|
||
|
write_ply(join('KP_clouds', 'KP_{:03d}_deform.ply'.format(file_i)),
|
||
|
[KP_deform],
|
||
|
['x', 'y', 'z'])
|
||
|
write_ply(join('KP_clouds', 'KP_{:03d}_normal.ply'.format(file_i)),
|
||
|
[KP_normal],
|
||
|
['x', 'y', 'z'])
|
||
|
print('OK')
|
||
|
|
||
|
return
|
||
|
|
||
|
# Draw a first plot
|
||
|
pick_func = fig1.on_mouse_pick(picker_callback)
|
||
|
pick_func.tolerance = 0.01
|
||
|
update_scene()
|
||
|
fig1.scene.interactor.add_observer('KeyPressEvent', keyboard_callback)
|
||
|
mlab.show()
|
||
|
|
||
|
return
|
||
|
|
||
|
@staticmethod
|
||
|
def show_activation(path, relu_idx=0, save_video=False):
|
||
|
"""
|
||
|
This function show the saved input point clouds maximizing the activations. You can also directly load the files
|
||
|
in a visualization software like CloudCompare.
|
||
|
In the case of relu_idx = 0 and if gaussian mode, the associated filter is also shown. This function can only
|
||
|
show the filters for the last saved epoch.
|
||
|
"""
|
||
|
|
||
|
################
|
||
|
# Find the files
|
||
|
################
|
||
|
|
||
|
# Check visu folder
|
||
|
visu_path = join('visu',
|
||
|
'visu_' + path.split('/')[-1],
|
||
|
'top_activations',
|
||
|
'Relu{:02d}'.format(relu_idx))
|
||
|
if not exists(visu_path):
|
||
|
message = 'Relu {:d} activations of the model {:s} not found.'
|
||
|
raise ValueError(message.format(relu_idx, path.split('/')[-1]))
|
||
|
|
||
|
# Get the list of files
|
||
|
feature_files = np.sort([f for f in listdir(visu_path) if f.endswith('.ply')])
|
||
|
if len(feature_files) == 0:
|
||
|
message = 'Relu {:d} activations of the model {:s} not found.'
|
||
|
raise ValueError(message.format(relu_idx, path.split('/')[-1]))
|
||
|
|
||
|
# Load mode
|
||
|
config = Config()
|
||
|
config.load(path)
|
||
|
mode = config.convolution_mode
|
||
|
|
||
|
#################
|
||
|
# Get activations
|
||
|
#################
|
||
|
|
||
|
all_points = []
|
||
|
all_responses = []
|
||
|
|
||
|
for file in feature_files:
|
||
|
|
||
|
# Load points
|
||
|
data = read_ply(join(visu_path, file))
|
||
|
all_points += [np.vstack((data['x'], data['y'], data['z'])).T]
|
||
|
all_responses += [data['responses']]
|
||
|
|
||
|
###########################
|
||
|
# Interactive visualization
|
||
|
###########################
|
||
|
|
||
|
# Create figure for features
|
||
|
fig1 = mlab.figure('Features', bgcolor=(0.5, 0.5, 0.5), size=(640, 480))
|
||
|
fig1.scene.parallel_projection = False
|
||
|
|
||
|
# Indices
|
||
|
global file_i
|
||
|
file_i = 0
|
||
|
|
||
|
def update_scene():
|
||
|
|
||
|
# clear figure
|
||
|
mlab.clf(fig1)
|
||
|
|
||
|
# Plot new data feature
|
||
|
points = all_points[file_i]
|
||
|
responses = all_responses[file_i]
|
||
|
min_response, max_response = np.min(responses), np.max(responses)
|
||
|
responses = (responses - min_response) / (max_response - min_response)
|
||
|
|
||
|
# Rescale points for visu
|
||
|
points = (points * 1.5 / config.in_radius + np.array([1.0, 1.0, 1.0])) * 50.0
|
||
|
|
||
|
# Show point clouds colorized with activations
|
||
|
activations = mlab.points3d(points[:, 0],
|
||
|
points[:, 1],
|
||
|
points[:, 2],
|
||
|
responses,
|
||
|
scale_factor=3.0,
|
||
|
scale_mode='none',
|
||
|
vmin=0.1,
|
||
|
vmax=0.9,
|
||
|
figure=fig1)
|
||
|
|
||
|
# New title
|
||
|
mlab.title(feature_files[file_i], color=(0, 0, 0), size=0.3, height=0.01)
|
||
|
text = '<--- (press g for previous)' + 50*' ' + '(press h for next) --->'
|
||
|
mlab.text(0.01, 0.01, text, color=(0, 0, 0), width=0.98)
|
||
|
mlab.orientation_axes()
|
||
|
|
||
|
return
|
||
|
|
||
|
def keyboard_callback(vtk_obj, event):
|
||
|
global file_i
|
||
|
|
||
|
if vtk_obj.GetKeyCode() in ['g', 'G']:
|
||
|
|
||
|
file_i = (file_i - 1) % len(all_responses)
|
||
|
update_scene()
|
||
|
|
||
|
elif vtk_obj.GetKeyCode() in ['h', 'H']:
|
||
|
|
||
|
file_i = (file_i + 1) % len(all_responses)
|
||
|
update_scene()
|
||
|
|
||
|
return
|
||
|
|
||
|
# Draw a first plot
|
||
|
update_scene()
|
||
|
fig1.scene.interactor.add_observer('KeyPressEvent', keyboard_callback)
|
||
|
mlab.show()
|
||
|
|
||
|
return
|
||
|
|
||
|
# Utilities
|
||
|
# ------------------------------------------------------------------------------------------------------------------
|
||
|
|
||
|
@staticmethod
|
||
|
def load_last_kernels(path):
|
||
|
|
||
|
# Directories of validation error
|
||
|
kernel_dirs = np.array([f for f in listdir(join(path, 'kernel_points')) if f.startswith('epoch')])
|
||
|
|
||
|
# Find last epoch folder
|
||
|
epochs = np.array([int(f[5:]) for f in kernel_dirs])
|
||
|
last_dir = kernel_dirs[np.argmax(epochs)]
|
||
|
|
||
|
# Find saved files for the first layer
|
||
|
kernel_file = join(path, 'kernel_points', last_dir, 'layer_0_simple_0.ply')
|
||
|
weights_file = join(path, 'kernel_points', last_dir, 'layer_0_simple_0.npy')
|
||
|
|
||
|
# Read kernel file
|
||
|
data = read_ply(kernel_file)
|
||
|
points = np.vstack((data['x'], data['y'], data['z'])).T
|
||
|
extents = data['sigma'].astype(np.float32)
|
||
|
|
||
|
# Read weight file
|
||
|
w = np.load(weights_file)
|
||
|
|
||
|
return points, extents, w
|
||
|
|
||
|
@staticmethod
|
||
|
def apply_weights(points, kernel, weights, extents):
|
||
|
|
||
|
# Get all difference matrices [n_points, n_kpoints, dim]
|
||
|
points = np.expand_dims(points, 1)
|
||
|
points = np.tile(points, [1, kernel.shape[0], 1])
|
||
|
differences = points - kernel
|
||
|
|
||
|
# Compute distance matrices [n_points, n_kpoints]
|
||
|
sq_distances = np.sum(np.square(differences), axis=-1)
|
||
|
|
||
|
# Compute gaussians [n_points, n_kpoints]
|
||
|
gaussian_values = np.exp(-sq_distances / (2 * np.square(extents)))
|
||
|
|
||
|
# Apply weights
|
||
|
return np.matmul(gaussian_values, np.squeeze(weights))
|
||
|
|
||
|
|
||
|
def top_relu_activations_old(self, model, dataset, relu_idx=0, top_num=5):
|
||
|
"""
|
||
|
Test the model on test dataset to see which points activate the most each neurons in a relu layer
|
||
|
:param model: model used at training
|
||
|
:param dataset: dataset used at training
|
||
|
:param relu_idx: which features are to be visualized
|
||
|
:param top_num: how many top candidates are kept per features
|
||
|
"""
|
||
|
|
||
|
#####################################
|
||
|
# First choose the visualized feature
|
||
|
#####################################
|
||
|
|
||
|
# List all relu ops
|
||
|
all_ops = [op for op in tf.get_default_graph().get_operations() if op.name.startswith('KernelPointNetwork')
|
||
|
and op.name.endswith('LeakyRelu')]
|
||
|
|
||
|
# Non relu ops in case we want the first KPConv features
|
||
|
KPConv_0 = [op for op in tf.get_default_graph().get_operations() if op.name.endswith('layer_0/simple_0/Sum_1')]
|
||
|
|
||
|
# Print the chosen one
|
||
|
if relu_idx == 0:
|
||
|
features_tensor = KPConv_0[relu_idx].outputs[0]
|
||
|
else:
|
||
|
features_tensor = all_ops[relu_idx].outputs[0]
|
||
|
|
||
|
# Get parameters
|
||
|
layer_idx = int(features_tensor.name.split('/')[1][6:])
|
||
|
if 'strided' in all_ops[relu_idx].name and not ('strided' in all_ops[relu_idx+1].name):
|
||
|
layer_idx += 1
|
||
|
features_dim = int(features_tensor.shape[1])
|
||
|
radius = model.config.first_subsampling_dl * model.config.density_parameter * (2 ** layer_idx)
|
||
|
|
||
|
if relu_idx == 0 :
|
||
|
print('SPECIAL CASE : relu_idx = 0 => visualization of the fist KPConv before relu')
|
||
|
print('You chose to visualize the output of operation named: ' + KPConv_0[0].name)
|
||
|
print('It contains {:d} features.'.format(int(features_tensor.shape[1])))
|
||
|
else :
|
||
|
print('You chose to visualize the output of operation named: ' + all_ops[relu_idx].name)
|
||
|
print('It contains {:d} features.'.format(int(features_tensor.shape[1])))
|
||
|
|
||
|
print('\nPossible Relu indices:')
|
||
|
for i, t in enumerate(all_ops):
|
||
|
print(i, ': ', t.name)
|
||
|
|
||
|
print('\n****************************************************************************')
|
||
|
|
||
|
#####################
|
||
|
# Initialize containers
|
||
|
#####################
|
||
|
|
||
|
# Initialize containers
|
||
|
self.top_features = -np.ones((top_num, features_dim))
|
||
|
self.top_classes = -np.ones((top_num, features_dim), dtype=np.int32)
|
||
|
self.saving = model.config.saving
|
||
|
|
||
|
# Testing parameters
|
||
|
num_votes = 3
|
||
|
|
||
|
# Create visu folder
|
||
|
self.visu_path = None
|
||
|
self.fmt_str = None
|
||
|
if model.config.saving:
|
||
|
self.visu_path = join('visu',
|
||
|
'visu_' + model.saving_path.split('/')[-1],
|
||
|
'top_activations',
|
||
|
'Relu{:02d}'.format(relu_idx))
|
||
|
self.fmt_str = 'f{:04d}_top{:02d}.ply'
|
||
|
if not exists(self.visu_path):
|
||
|
makedirs(self.visu_path)
|
||
|
|
||
|
# *******************
|
||
|
# Network predictions
|
||
|
# *******************
|
||
|
|
||
|
mean_dt = np.zeros(2)
|
||
|
last_display = time.time()
|
||
|
for v in range(num_votes):
|
||
|
|
||
|
# Run model on all test examples
|
||
|
# ******************************
|
||
|
|
||
|
# Initialise iterator with test data
|
||
|
if model.config.dataset.startswith('S3DIS'):
|
||
|
self.sess.run(dataset.val_init_op)
|
||
|
else:
|
||
|
self.sess.run(dataset.test_init_op)
|
||
|
count = 0
|
||
|
|
||
|
while True:
|
||
|
try:
|
||
|
|
||
|
if model.config.dataset.startswith('ShapeNetPart'):
|
||
|
if model.config.dataset.split('_')[1] == 'multi':
|
||
|
label_op = model.inputs['super_labels']
|
||
|
else:
|
||
|
label_op = model.inputs['point_labels']
|
||
|
elif model.config.dataset.startswith('S3DIS'):
|
||
|
label_op = model.inputs['point_labels']
|
||
|
elif model.config.dataset.startswith('Scannet'):
|
||
|
label_op = model.inputs['point_labels']
|
||
|
elif model.config.dataset.startswith('ModelNet40'):
|
||
|
label_op = model.inputs['labels']
|
||
|
else:
|
||
|
raise ValueError('Unsupported dataset')
|
||
|
|
||
|
# Run one step of the model
|
||
|
t = [time.time()]
|
||
|
ops = (all_ops[-1].outputs[0],
|
||
|
features_tensor,
|
||
|
label_op,
|
||
|
model.inputs['points'],
|
||
|
model.inputs['pools'],
|
||
|
model.inputs['in_batches'])
|
||
|
_, stacked_features, labels, all_points, all_pools, in_batches = self.sess.run(ops, {model.dropout_prob: 1.0})
|
||
|
t += [time.time()]
|
||
|
count += in_batches.shape[0]
|
||
|
|
||
|
|
||
|
# Stack all batches
|
||
|
max_ind = np.max(in_batches)
|
||
|
stacked_batches = []
|
||
|
for b_i, b in enumerate(in_batches):
|
||
|
stacked_batches += [b[b < max_ind - 0.5]*0+b_i]
|
||
|
stacked_batches = np.hstack(stacked_batches)
|
||
|
|
||
|
# Find batches at wanted layer
|
||
|
for l in range(model.config.num_layers - 1):
|
||
|
if l >= layer_idx:
|
||
|
break
|
||
|
stacked_batches = stacked_batches[all_pools[l][:, 0]]
|
||
|
|
||
|
# Get each example and update top_activations
|
||
|
for b_i, b in enumerate(in_batches):
|
||
|
b = b[b < max_ind - 0.5]
|
||
|
in_points = all_points[0][b]
|
||
|
features = stacked_features[stacked_batches == b_i]
|
||
|
points = all_points[layer_idx][stacked_batches == b_i]
|
||
|
if model.config.dataset in ['ShapeNetPart_multi', 'ModelNet40_classif']:
|
||
|
l = labels[b_i]
|
||
|
else:
|
||
|
l = np.argmax(np.bincount(labels[b]))
|
||
|
|
||
|
self.update_top_activations(features, labels[b_i], points, in_points, radius)
|
||
|
|
||
|
# Average timing
|
||
|
t += [time.time()]
|
||
|
mean_dt = 0.95 * mean_dt + 0.05 * (np.array(t[1:]) - np.array(t[:-1]))
|
||
|
|
||
|
# Display
|
||
|
if (t[-1] - last_display) > 1.0:
|
||
|
last_display = t[-1]
|
||
|
if model.config.dataset.startswith('S3DIS'):
|
||
|
completed = count / (model.config.validation_size * model.config.batch_num)
|
||
|
else:
|
||
|
completed = count / dataset.num_test
|
||
|
message = 'Vote {:d} : {:.1f}% (timings : {:4.2f} {:4.2f})'
|
||
|
print(message.format(v,
|
||
|
100 * completed,
|
||
|
1000 * (mean_dt[0]),
|
||
|
1000 * (mean_dt[1])))
|
||
|
#class_names = np.array([dataset.label_to_names[i] for i in range(dataset.num_classes)])
|
||
|
#print(class_names[self.top_classes[:, :20]].T)
|
||
|
|
||
|
except tf.errors.OutOfRangeError:
|
||
|
break
|
||
|
|
||
|
return
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
def show_ModelNet_models(all_points):
|
||
|
|
||
|
###########################
|
||
|
# Interactive visualization
|
||
|
###########################
|
||
|
|
||
|
# Create figure for features
|
||
|
fig1 = mlab.figure('Models', bgcolor=(1, 1, 1), size=(1000, 800))
|
||
|
fig1.scene.parallel_projection = False
|
||
|
|
||
|
# Indices
|
||
|
global file_i
|
||
|
file_i = 0
|
||
|
|
||
|
def update_scene():
|
||
|
|
||
|
# clear figure
|
||
|
mlab.clf(fig1)
|
||
|
|
||
|
# Plot new data feature
|
||
|
points = all_points[file_i]
|
||
|
|
||
|
# Rescale points for visu
|
||
|
points = (points * 1.5 + np.array([1.0, 1.0, 1.0])) * 50.0
|
||
|
|
||
|
# Show point clouds colorized with activations
|
||
|
activations = mlab.points3d(points[:, 0],
|
||
|
points[:, 1],
|
||
|
points[:, 2],
|
||
|
points[:, 2],
|
||
|
scale_factor=3.0,
|
||
|
scale_mode='none',
|
||
|
figure=fig1)
|
||
|
|
||
|
# New title
|
||
|
mlab.title(str(file_i), color=(0, 0, 0), size=0.3, height=0.01)
|
||
|
text = '<--- (press g for previous)' + 50 * ' ' + '(press h for next) --->'
|
||
|
mlab.text(0.01, 0.01, text, color=(0, 0, 0), width=0.98)
|
||
|
mlab.orientation_axes()
|
||
|
|
||
|
return
|
||
|
|
||
|
def keyboard_callback(vtk_obj, event):
|
||
|
global file_i
|
||
|
|
||
|
if vtk_obj.GetKeyCode() in ['g', 'G']:
|
||
|
|
||
|
file_i = (file_i - 1) % len(all_points)
|
||
|
update_scene()
|
||
|
|
||
|
elif vtk_obj.GetKeyCode() in ['h', 'H']:
|
||
|
|
||
|
file_i = (file_i + 1) % len(all_points)
|
||
|
update_scene()
|
||
|
|
||
|
return
|
||
|
|
||
|
# Draw a first plot
|
||
|
update_scene()
|
||
|
fig1.scene.interactor.add_observer('KeyPressEvent', keyboard_callback)
|
||
|
mlab.show()
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|