We provide pretrained weights for S3DIS dataset. The raw weights come with a parameter file describing the architecture and network hyperparameters. The code can thus load the network automatically.
| Name (link) | KPConv Type | Description | Score |
|:-------------|:-------------:|:-----|:-----:|
| [Light_KPFCNN](https://drive.google.com/file/d/14sz0hdObzsf_exxInXdOIbnUTe0foOOz/view?usp=sharing) | rigid | A network with small `in_radius` for light GPU consumption (~8GB) | 65.4% |
| [Heavy_KPFCNN](https://drive.google.com/file/d/1ySQq3SRBgk2Vt5Bvj-0N7jDPi0QTPZiZ/view?usp=sharing) | rigid | A network with better performances but needing bigger GPU (>18GB). | 66.4% |
| [Deform_Light_KPFCNN](https://drive.google.com/file/d/1gZfv6q6lUT9STFh7Fk4qVa5IVTgwmWIr/view?usp=sharing) | deform | Lighter version of the deformable architecture (~8GB). | 66.7% |
6. The test script creates a folder `test/name-of-your-log`, where it saves the predictions, potentials, and probabilities per class. You can load them with CloudCompare for visualization.