correction of use_potentials=False on validation
This commit is contained in:
parent
6c31df8156
commit
1527e7d09e
2
.gitignore
vendored
2
.gitignore
vendored
|
@ -4,6 +4,8 @@
|
|||
/results
|
||||
/test
|
||||
/docker_scripts
|
||||
/kernels/dispositions
|
||||
core
|
||||
|
||||
# VSCode related
|
||||
*.code-workspace
|
||||
|
|
|
@ -206,8 +206,7 @@ class S3DISDataset(PointCloudDataset):
|
|||
self.potentials = None
|
||||
self.min_potentials = None
|
||||
self.argmin_potentials = None
|
||||
N = config.epoch_steps * config.batch_num
|
||||
self.epoch_inds = torch.from_numpy(np.zeros((2, N), dtype=np.int64))
|
||||
self.epoch_inds = torch.from_numpy(np.zeros((2, self.epoch_n), dtype=np.int64))
|
||||
self.epoch_i = torch.from_numpy(np.zeros((1,), dtype=np.int64))
|
||||
self.epoch_i.share_memory_()
|
||||
self.epoch_inds.share_memory_()
|
||||
|
@ -515,6 +514,9 @@ class S3DISDataset(PointCloudDataset):
|
|||
|
||||
# Update epoch indice
|
||||
self.epoch_i += 1
|
||||
if self.epoch_i >= int(self.epoch_inds.shape[1]):
|
||||
self.epoch_i -= int(self.epoch_inds.shape[1])
|
||||
|
||||
|
||||
# Get points from tree structure
|
||||
points = np.array(self.input_trees[cloud_ind].data, copy=False)
|
||||
|
@ -1157,10 +1159,17 @@ class S3DISSampler(Sampler):
|
|||
estim_b = 0
|
||||
target_b = self.dataset.config.batch_num
|
||||
|
||||
# Calibration parameters
|
||||
low_pass_T = 10
|
||||
Kp = 100.0
|
||||
# Expected batch size order of magnitude
|
||||
expected_N = 100000
|
||||
|
||||
# Calibration parameters. Higher means faster but can also become unstable
|
||||
# Reduce Kp and Kd if your GP Uis small as the total number of points per batch will be smaller
|
||||
low_pass_T = 100
|
||||
Kp = expected_N / 200
|
||||
Ki = 0.001 * Kp
|
||||
Kd = 5 * Kp
|
||||
finer = False
|
||||
stabilized = False
|
||||
|
||||
# Convergence parameters
|
||||
smooth_errors = []
|
||||
|
@ -1170,12 +1179,22 @@ class S3DISSampler(Sampler):
|
|||
last_display = time.time()
|
||||
i = 0
|
||||
breaking = False
|
||||
error_I = 0
|
||||
error_D = 0
|
||||
last_error = 0
|
||||
|
||||
debug_in = []
|
||||
debug_out = []
|
||||
debug_b = []
|
||||
debug_estim_b = []
|
||||
|
||||
#####################
|
||||
# Perform calibration
|
||||
#####################
|
||||
|
||||
for epoch in range(10):
|
||||
# number of batch per epoch
|
||||
sample_batches = 999
|
||||
for epoch in range((sample_batches // self.N) + 1):
|
||||
for batch_i, batch in enumerate(dataloader):
|
||||
|
||||
# Update neighborhood histogram
|
||||
|
@ -1191,14 +1210,25 @@ class S3DISSampler(Sampler):
|
|||
|
||||
# Estimate error (noisy)
|
||||
error = target_b - b
|
||||
error_I += error
|
||||
error_D = error - last_error
|
||||
last_error = error
|
||||
|
||||
|
||||
# Save smooth errors for convergene check
|
||||
smooth_errors.append(target_b - estim_b)
|
||||
if len(smooth_errors) > 10:
|
||||
if len(smooth_errors) > 30:
|
||||
smooth_errors = smooth_errors[1:]
|
||||
|
||||
# Update batch limit with P controller
|
||||
self.dataset.batch_limit += Kp * error
|
||||
self.dataset.batch_limit += Kp * error + Ki * error_I + Kd * error_D
|
||||
|
||||
# Unstability detection
|
||||
if not stabilized and self.dataset.batch_limit < 0:
|
||||
Kp *= 0.1
|
||||
Ki *= 0.1
|
||||
Kd *= 0.1
|
||||
stabilized = True
|
||||
|
||||
# finer low pass filter when closing in
|
||||
if not finer and np.abs(estim_b - target_b) < 1:
|
||||
|
@ -1221,14 +1251,42 @@ class S3DISSampler(Sampler):
|
|||
estim_b,
|
||||
int(self.dataset.batch_limit)))
|
||||
|
||||
# Debug plots
|
||||
debug_in.append(int(batch.points[0].shape[0]))
|
||||
debug_out.append(int(self.dataset.batch_limit))
|
||||
debug_b.append(b)
|
||||
debug_estim_b.append(estim_b)
|
||||
|
||||
if breaking:
|
||||
break
|
||||
|
||||
# Plot in case we did not reach convergence
|
||||
if not breaking:
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
print("ERROR: It seems that the calibration have not reached convergence. Here are some plot to understand why:")
|
||||
print("If you notice unstability, reduce the expected_N value")
|
||||
print("If convergece is too slow, increase the expected_N value")
|
||||
|
||||
plt.figure()
|
||||
plt.plot(debug_in)
|
||||
plt.plot(debug_out)
|
||||
|
||||
plt.figure()
|
||||
plt.plot(debug_b)
|
||||
plt.plot(debug_estim_b)
|
||||
|
||||
plt.show()
|
||||
|
||||
a = 1/0
|
||||
|
||||
|
||||
# Use collected neighbor histogram to get neighbors limit
|
||||
cumsum = np.cumsum(neighb_hists.T, axis=0)
|
||||
percentiles = np.sum(cumsum < (untouched_ratio * cumsum[hist_n - 1, :]), axis=0)
|
||||
self.dataset.neighborhood_limits = percentiles
|
||||
|
||||
|
||||
if verbose:
|
||||
|
||||
# Crop histogram
|
||||
|
|
|
@ -65,6 +65,30 @@ class S3DISConfig(Config):
|
|||
# Architecture definition
|
||||
#########################
|
||||
|
||||
# # Define layers
|
||||
# architecture = ['simple',
|
||||
# 'resnetb',
|
||||
# 'resnetb_strided',
|
||||
# 'resnetb',
|
||||
# 'resnetb',
|
||||
# 'resnetb_strided',
|
||||
# 'resnetb_deformable',
|
||||
# 'resnetb_deformable',
|
||||
# 'resnetb_deformable_strided',
|
||||
# 'resnetb_deformable',
|
||||
# 'resnetb_deformable',
|
||||
# 'resnetb_deformable_strided',
|
||||
# 'resnetb_deformable',
|
||||
# 'resnetb_deformable',
|
||||
# 'nearest_upsample',
|
||||
# 'unary',
|
||||
# 'nearest_upsample',
|
||||
# 'unary',
|
||||
# 'nearest_upsample',
|
||||
# 'unary',
|
||||
# 'nearest_upsample',
|
||||
# 'unary']
|
||||
|
||||
# Define layers
|
||||
architecture = ['simple',
|
||||
'resnetb',
|
||||
|
@ -72,14 +96,14 @@ class S3DISConfig(Config):
|
|||
'resnetb',
|
||||
'resnetb',
|
||||
'resnetb_strided',
|
||||
'resnetb_deformable',
|
||||
'resnetb_deformable',
|
||||
'resnetb_deformable_strided',
|
||||
'resnetb_deformable',
|
||||
'resnetb_deformable',
|
||||
'resnetb_deformable_strided',
|
||||
'resnetb_deformable',
|
||||
'resnetb_deformable',
|
||||
'resnetb',
|
||||
'resnetb',
|
||||
'resnetb_strided',
|
||||
'resnetb',
|
||||
'resnetb',
|
||||
'resnetb_strided',
|
||||
'resnetb',
|
||||
'resnetb',
|
||||
'nearest_upsample',
|
||||
'unary',
|
||||
'nearest_upsample',
|
||||
|
@ -97,7 +121,7 @@ class S3DISConfig(Config):
|
|||
num_kernel_points = 15
|
||||
|
||||
# Radius of the input sphere (decrease value to reduce memory cost)
|
||||
in_radius = 1.2
|
||||
in_radius = 1.0
|
||||
|
||||
# Size of the first subsampling grid in meter (increase value to reduce memory cost)
|
||||
first_subsampling_dl = 0.02
|
||||
|
@ -244,8 +268,8 @@ if __name__ == '__main__':
|
|||
config.saving_path = sys.argv[1]
|
||||
|
||||
# Initialize datasets
|
||||
training_dataset = S3DISDataset(config, set='training', use_potentials=True)
|
||||
test_dataset = S3DISDataset(config, set='validation', use_potentials=True)
|
||||
training_dataset = S3DISDataset(config, set='training', use_potentials=False)
|
||||
test_dataset = S3DISDataset(config, set='validation', use_potentials=False)
|
||||
|
||||
# Initialize samplers
|
||||
training_sampler = S3DISSampler(training_dataset)
|
||||
|
|
|
@ -579,6 +579,7 @@ class ModelTrainer:
|
|||
text_file.write(line)
|
||||
|
||||
# Save potentials
|
||||
if val_loader.dataset.use_potentials:
|
||||
pot_path = join(config.saving_path, 'potentials')
|
||||
if not exists(pot_path):
|
||||
makedirs(pot_path)
|
||||
|
|
Loading…
Reference in a new issue