diff --git a/doc/slam_segmentation_guide.md b/doc/slam_segmentation_guide.md index 607a30d..be47d75 100644 --- a/doc/slam_segmentation_guide.md +++ b/doc/slam_segmentation_guide.md @@ -1,5 +1,5 @@ -## Scene Segmentation on S3DIS +## Scene Segmentation on SemanticKitti ### Data @@ -12,22 +12,24 @@ Download the three file named: * [`data_odometry_calib.zip` (1 MB)](http://www.cvlibs.net/download.php?file=data_odometry_calib.zip) * [`data_odometry_labels.zip` (179 MB)](http://semantic-kitti.org/assets/data_odometry_labels.zip) - uncompress the data and move it to `../../Data/SemanticKitti`. -http://www.cvlibs.net/download.php?file=data_odometry_velodyne.zip - +You also need to download the files +[`semantic-kitti-all.yaml`](https://github.com/PRBonn/semantic-kitti-api/blob/master/config/semantic-kitti-all.yaml) +and +[`semantic-kitti.yaml`](https://github.com/PRBonn/semantic-kitti-api/blob/master/config/semantic-kitti.yaml). +Place them in your `../../Data/SemanticKitti` folder. N.B. If you want to place your data anywhere else, you just have to change the variable -`self.path` of `S3DISDataset` class ([here](https://github.com/HuguesTHOMAS/KPConv-PyTorch/blob/afa18c92f00c6ed771b61cb08b285d2f93446ea4/datasets/S3DIS.py#L88)). +`self.path` of `SemanticKittiDataset` class ([here](https://github.com/HuguesTHOMAS/KPConv-PyTorch/blob/c32e6ce94ed34a3dd9584f98d8dc0be02535dfb4/datasets/SemanticKitti.py#L65)). ### Training Simply run the following script to start the training: - python3 training_S3DIS.py + python3 training_SemanticKitti.py -Similarly to ModelNet40 training, the parameters can be modified in a configuration subclass called `S3DISConfig`, and the first run of this script might take some time to precompute dataset structures. +Similarly to ModelNet40 training, the parameters can be modified in a configuration subclass called `SemanticKittiConfig`, and the first run of this script might take some time to precompute dataset structures. ### Plot a logged training