diff --git a/datasets/SemanticKitti.py b/datasets/SemanticKitti.py index 6c66df7..d557d94 100644 --- a/datasets/SemanticKitti.py +++ b/datasets/SemanticKitti.py @@ -504,7 +504,8 @@ class SemanticKittiDataset(PointCloudDataset): # > Drop: We can drop even more points. Random choice could be faster without replace=False # > reproj: No reprojection needed # > Augment: See which data agment we want at test time - # > input: MAIN BOTTLENECK. We need to see if we can do faster, maybe with some parallelisation + # > input: MAIN BOTTLENECK. We need to see if we can do faster, maybe with some parallelisation. neighbors + # and subsampling accelerated with lidar frame order return [self.config.num_layers] + input_list @@ -887,9 +888,6 @@ class SemanticKittiSampler(Sampler): if breaking: break - # TODO: Compute the percentile np.percentile? - # TODO: optionnally show a plot of the in_points histogram? - self.dataset.max_in_p = int(np.percentile(all_lengths, 100*untouched_ratio)) if verbose: @@ -1379,7 +1377,7 @@ def debug_class_w(dataset, loader): i = 0 - counts = np.zeros((0, dataset.num_classes,), dtype=np.int64) + counts = np.zeros((dataset.num_classes,), dtype=np.int64) s = '{:^6}|'.format('step') for c in dataset.label_names: @@ -1393,12 +1391,12 @@ def debug_class_w(dataset, loader): # count labels new_counts = np.bincount(batch.labels) + counts[:new_counts.shape[0]] += new_counts.astype(np.int64) # Update proportions proportions = 1000 * counts / np.sum(counts) - print(proportions) s = '{:^6d}|'.format(i) for pp in proportions: s += '{:^6.1f}'.format(pp) diff --git a/models/architectures.py b/models/architectures.py index 75b5949..696cb94 100644 --- a/models/architectures.py +++ b/models/architectures.py @@ -117,8 +117,6 @@ class KPCNN(nn.Module): :return: loss """ - # TODO: Ignore unclassified points in loss for segmentation architecture - # Cross entropy loss self.output_loss = self.criterion(outputs, labels) diff --git a/plot_convergence.py b/plot_convergence.py index 8b0abe1..4c0ac6e 100644 --- a/plot_convergence.py +++ b/plot_convergence.py @@ -1464,6 +1464,8 @@ def SemanticKittiFirst(old_result_limit): logs_names = ['R=5.0_dl=0.04', 'R=5.0_dl=0.08', 'R=10.0_dl=0.08', + 'R=10.0_dl=0.08_weigths', + 'R=10.0_dl=0.08_sqrt_weigths', 'test'] logs_names = np.array(logs_names[:len(logs)]) @@ -1481,7 +1483,6 @@ if __name__ == '__main__': ###################################################### # TODO: test deformable on S3DIS to see of fitting loss works - # TODO: GOOOO SemanticKitti for wednesday at least have a timing to give to them # TODO: try class weights on S3DIS (very low weight for beam) # Old result limit diff --git a/train_S3DIS.py b/train_S3DIS.py index 250289a..e523b02 100644 --- a/train_S3DIS.py +++ b/train_S3DIS.py @@ -178,7 +178,7 @@ class S3DISConfig(Config): augment_noise = 0.001 augment_color = 0.8 - # The way we balance segmentation loss TODO: implement and test 'class' and 'batch' modes + # The way we balance segmentation loss # > 'none': Each point in the whole batch has the same contribution. # > 'class': Each class has the same contribution (points are weighted according to class balance) # > 'batch': Each cloud in the batch has the same contribution (points are weighted according cloud sizes) diff --git a/train_SemanticKitti.py b/train_SemanticKitti.py index 93292fe..08a33ec 100644 --- a/train_SemanticKitti.py +++ b/train_SemanticKitti.py @@ -180,7 +180,24 @@ class SemanticKittiConfig(Config): augment_color = 0.8 # Choose weights for class (used in segmentation loss). Empty list for no weights - class_w = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] + # class proportion for R=10.0 and dl=0.08 (first is unlabeled) + # 19.1 48.9 0.5 1.1 5.6 3.6 0.7 0.6 0.9 193.2 17.7 127.4 6.7 132.3 68.4 283.8 7.0 78.5 3.3 0.8 + # + # + + # Inverse of proportion * 20 + # class_w = [0.409, 40.000, 18.182, 3.571, 5.556, 28.571, 33.333, 22.222, 0.104, + # 1.130, 0.157, 2.985, 0.151, 0.292, 0.070, 2.857, 0.255, 6.061, 25.000] + + # Inverse of proportion *20 capped (0.1 < X < 10) + # class_w = [0.409, 10.000, 10.000, 3.571, 5.556, 10.000, 10.000, 10.000, 0.104, + # 1.130, 0.157, 2.985, 0.151, 0.292, 0.100, 2.857, 0.255, 6.061, 10.000] + + # Inverse of proportion *20 then sqrt + class_w = [0.639529479, 6.32455532, 4.264014327, 1.889822365, 2.357022604, 5.345224838, + 5.773502692, 4.714045208, 0.321744726, 1.062988007, 0.396214426, 1.727736851, + 0.388807896, 0.54073807, 0.265465937, 1.690308509, 0.504754465, 2.46182982, 5] + # Do we nee to save convergence saving = True @@ -283,7 +300,7 @@ if __name__ == '__main__': # debug_timing(training_dataset, training_loader) # debug_timing(test_dataset, test_loader) - debug_class_w(training_dataset, training_loader) + # debug_class_w(training_dataset, training_loader) print('\nModel Preparation') print('*****************') @@ -316,6 +333,3 @@ if __name__ == '__main__': print('Forcing exit now') os.kill(os.getpid(), signal.SIGINT) - - # TODO: Create a function debug_class_weights that shows class distribution in input sphere. Use that as - # indication for the class weights during training