Initial commit

This commit is contained in:
HuguesTHOMAS 2020-04-03 11:22:57 -04:00
parent c131638fa7
commit 5efecbbe20
5 changed files with 286 additions and 50 deletions

View file

@ -175,7 +175,6 @@ class S3DISDataset(PointCloudDataset):
self.min_potentials += [float(self.potentials[-1][min_ind])]
# Share potential memory
self.pot_lock = Lock()
self.argmin_potentials = torch.from_numpy(np.array(self.argmin_potentials, dtype=np.int64))
self.min_potentials = torch.from_numpy(np.array(self.min_potentials, dtype=np.float64))
self.argmin_potentials.share_memory_()
@ -185,12 +184,20 @@ class S3DISDataset(PointCloudDataset):
self.worker_waiting = torch.tensor([0 for _ in range(config.input_threads)], dtype=torch.int32)
self.worker_waiting.share_memory_()
self.epoch_inds = None
self.epoch_i = 0
else:
self.pot_lock = None
self.potentials = None
self.min_potentials = None
self.argmin_potentials = None
N = config.epoch_steps * config.batch_num
self.epoch_inds = torch.from_numpy(np.zeros((2, N), dtype=np.int64))
self.epoch_i = torch.from_numpy(np.zeros((1,), dtype=np.int64))
self.epoch_i.share_memory_()
self.epoch_inds.share_memory_()
self.worker_lock = Lock()
# For ERF visualization, we want only one cloud per batch and no randomness
if self.set == 'ERF':
@ -206,12 +213,19 @@ class S3DISDataset(PointCloudDataset):
"""
return len(self.cloud_names)
def __getitem__(self, batch_i, debug_workers=False):
def __getitem__(self, batch_i):
"""
The main thread gives a list of indices to load a batch. Each worker is going to work in parallel to load a
different list of indices.
"""
if self.use_potentials:
return self.potential_item(batch_i)
else:
return self.random_item(batch_i)
def potential_item(self, batch_i, debug_workers=False):
# Initiate concatanation lists
p_list = []
f_list = []
@ -226,7 +240,6 @@ class S3DISDataset(PointCloudDataset):
info = get_worker_info()
wid = info.id
while True:
if debug_workers:
@ -243,7 +256,7 @@ class S3DISDataset(PointCloudDataset):
print(message)
self.worker_waiting[wid] = 0
with self.pot_lock:
with self.worker_lock:
if debug_workers:
message = ''
@ -398,6 +411,131 @@ class S3DISDataset(PointCloudDataset):
return input_list
def random_item(self, batch_i):
# Initiate concatanation lists
p_list = []
f_list = []
l_list = []
i_list = []
pi_list = []
ci_list = []
s_list = []
R_list = []
batch_n = 0
while True:
with self.worker_lock:
# Get potential minimum
cloud_ind = int(self.epoch_inds[0, self.epoch_i])
point_ind = int(self.epoch_inds[1, self.epoch_i])
# Update epoch indice
self.epoch_i += 1
# Get points from tree structure
points = np.array(self.input_trees[cloud_ind].data, copy=False)
# Center point of input region
center_point = points[point_ind, :].reshape(1, -1)
# Add a small noise to center point
if self.set != 'ERF':
center_point += np.random.normal(scale=self.config.in_radius / 10, size=center_point.shape)
# Indices of points in input region
input_inds = self.input_trees[cloud_ind].query_radius(center_point,
r=self.config.in_radius)[0]
# Number collected
n = input_inds.shape[0]
# Collect labels and colors
input_points = (points[input_inds] - center_point).astype(np.float32)
input_colors = self.input_colors[cloud_ind][input_inds]
if self.set in ['test', 'ERF']:
input_labels = np.zeros(input_points.shape[0])
else:
input_labels = self.input_labels[cloud_ind][input_inds]
input_labels = np.array([self.label_to_idx[l] for l in input_labels])
# Data augmentation
input_points, scale, R = self.augmentation_transform(input_points)
# Color augmentation
if np.random.rand() > self.config.augment_color:
input_colors *= 0
# Get original height as additional feature
input_features = np.hstack((input_colors, input_points[:, 2:] + center_point[:, 2:])).astype(np.float32)
# Stack batch
p_list += [input_points]
f_list += [input_features]
l_list += [input_labels]
pi_list += [input_inds]
i_list += [point_ind]
ci_list += [cloud_ind]
s_list += [scale]
R_list += [R]
# Update batch size
batch_n += n
# In case batch is full, stop
if batch_n > int(self.batch_limit):
break
# Randomly drop some points (act as an augmentation process and a safety for GPU memory consumption)
# if n > int(self.batch_limit):
# input_inds = np.random.choice(input_inds, size=int(self.batch_limit) - 1, replace=False)
# n = input_inds.shape[0]
###################
# Concatenate batch
###################
stacked_points = np.concatenate(p_list, axis=0)
features = np.concatenate(f_list, axis=0)
labels = np.concatenate(l_list, axis=0)
point_inds = np.array(i_list, dtype=np.int32)
cloud_inds = np.array(ci_list, dtype=np.int32)
input_inds = np.concatenate(pi_list, axis=0)
stack_lengths = np.array([pp.shape[0] for pp in p_list], dtype=np.int32)
scales = np.array(s_list, dtype=np.float32)
rots = np.stack(R_list, axis=0)
# Input features
stacked_features = np.ones_like(stacked_points[:, :1], dtype=np.float32)
if self.config.in_features_dim == 1:
pass
elif self.config.in_features_dim == 4:
stacked_features = np.hstack((stacked_features, features[:, :3]))
elif self.config.in_features_dim == 5:
stacked_features = np.hstack((stacked_features, features))
else:
raise ValueError('Only accepted input dimensions are 1, 4 and 7 (without and with XYZ)')
#######################
# Create network inputs
#######################
#
# Points, neighbors, pooling indices for each layers
#
# Get the whole input list
input_list = self.segmentation_inputs(stacked_points,
stacked_features,
labels,
stack_lengths)
# Add scale and rotation for testing
input_list += [scales, rots, cloud_inds, point_inds, input_inds]
return input_list
def prepare_S3DIS_ply(self):
print('\nPreparing ply files')
@ -622,14 +760,14 @@ class S3DISDataset(PointCloudDataset):
# Reprojection indices
######################
# Get number of clouds
self.num_clouds = len(self.input_trees)
# Only necessary for validation and test sets
if self.set in ['validation', 'test']:
print('\nPreparing reprojection indices for testing')
# Get number of clouds
self.num_clouds = len(self.input_trees)
# Get validation/test reprojection indices
i_cloud = 0
for i, file_path in enumerate(self.train_files):
@ -690,7 +828,7 @@ class S3DISDataset(PointCloudDataset):
class S3DISSampler(Sampler):
"""Sampler for S3DIS"""
def __init__(self, dataset: S3DISDataset,):
def __init__(self, dataset: S3DISDataset):
Sampler.__init__(self, dataset)
# Dataset used by the sampler (no copy is made in memory)
@ -710,6 +848,49 @@ class S3DISSampler(Sampler):
(input sphere) in epoch instead of the list of point indices
"""
if not self.dataset.use_potentials:
# Initiate current epoch ind
self.dataset.epoch_i *= 0
self.dataset.epoch_inds *= 0
# Initiate container for indices
all_epoch_inds = np.zeros((2, 0), dtype=np.int32)
# Number of sphere centers taken per class in each cloud
num_centers = self.N * self.dataset.config.batch_num
random_pick_n = int(np.ceil(num_centers / (self.dataset.num_clouds * self.dataset.config.num_classes)))
# Choose random points of each class for each cloud
for cloud_ind, cloud_labels in enumerate(self.dataset.input_labels):
epoch_indices = np.empty((0,), dtype=np.int32)
for label_ind, label in enumerate(self.dataset.label_values):
if label not in self.dataset.ignored_labels:
label_indices = np.where(np.equal(cloud_labels, label))[0]
if len(label_indices) <= random_pick_n:
epoch_indices = np.hstack((epoch_indices, label_indices))
elif len(label_indices) < 50 * random_pick_n:
new_randoms = np.random.choice(label_indices, size=random_pick_n, replace=False)
epoch_indices = np.hstack((epoch_indices, new_randoms.astype(np.int32)))
else:
rand_inds = []
while len(rand_inds) < random_pick_n:
rand_inds = np.unique(np.random.choice(label_indices, size=5 * random_pick_n, replace=True))
epoch_indices = np.hstack((epoch_indices, rand_inds[:random_pick_n].astype(np.int32)))
# Stack those indices with the cloud index
epoch_indices = np.vstack((np.full(epoch_indices.shape, cloud_ind, dtype=np.int32), epoch_indices))
# Update the global indice container
all_epoch_inds = np.hstack((all_epoch_inds, epoch_indices))
# Random permutation of the indices
random_order = np.random.permutation(all_epoch_inds.shape[1])
all_epoch_inds = all_epoch_inds[:, random_order].astype(np.int64)
# Update epoch inds
self.dataset.epoch_inds += torch.from_numpy(all_epoch_inds[:, :num_centers])
# Generator loop
for i in range(self.N):
yield i
@ -718,7 +899,7 @@ class S3DISSampler(Sampler):
"""
The number of yielded samples is variable
"""
return None
return self.N
def fast_calib(self):
"""
@ -827,7 +1008,12 @@ class S3DISSampler(Sampler):
batch_lim_dict = {}
# Check if the batch limit associated with current parameters exists
key = '{:.3f}_{:.3f}_{:d}'.format(self.dataset.config.in_radius,
if self.dataset.use_potentials:
sampler_method = 'potentials'
else:
sampler_method = 'random'
key = '{:s}_{:.3f}_{:.3f}_{:d}'.format(sampler_method,
self.dataset.config.in_radius,
self.dataset.config.first_subsampling_dl,
self.dataset.config.batch_num)
if key in batch_lim_dict:
@ -903,8 +1089,6 @@ class S3DISSampler(Sampler):
# From config parameter, compute higher bound of neighbors number in a neighborhood
hist_n = int(np.ceil(4 / 3 * np.pi * (self.dataset.config.deform_radius + 1) ** 3))
print(hist_n)
# Histogram of neighborhood sizes
neighb_hists = np.zeros((self.dataset.config.num_layers, hist_n), dtype=np.int32)
@ -1018,7 +1202,12 @@ class S3DISSampler(Sampler):
print()
# Save batch_limit dictionary
key = '{:.3f}_{:.3f}_{:d}'.format(self.dataset.config.in_radius,
if self.dataset.use_potentials:
sampler_method = 'potentials'
else:
sampler_method = 'random'
key = '{:s}_{:.3f}_{:.3f}_{:d}'.format(sampler_method,
self.dataset.config.in_radius,
self.dataset.config.first_subsampling_dl,
self.dataset.config.batch_num)
batch_lim_dict[key] = float(self.dataset.batch_limit)
@ -1232,6 +1421,7 @@ def debug_timing(dataset, loader):
last_display = time.time()
mean_dt = np.zeros(2)
estim_b = dataset.config.batch_num
estim_N = 0
for epoch in range(10):
@ -1244,6 +1434,7 @@ def debug_timing(dataset, loader):
# Update estim_b (low pass filter)
estim_b += (len(batch.cloud_inds) - estim_b) / 100
estim_N += (batch.features.shape[0] - estim_N) / 10
# Pause simulating computations
time.sleep(0.05)
@ -1255,11 +1446,12 @@ def debug_timing(dataset, loader):
# Console display (only one per second)
if (t[-1] - last_display) > -1.0:
last_display = t[-1]
message = 'Step {:08d} -> (ms/batch) {:8.2f} {:8.2f} / batch = {:.2f}'
message = 'Step {:08d} -> (ms/batch) {:8.2f} {:8.2f} / batch = {:.2f} - {:.0f}'
print(message.format(batch_i,
1000 * mean_dt[0],
1000 * mean_dt[1],
estim_b))
estim_b,
estim_N))
print('************* Epoch ended *************')

View file

@ -65,8 +65,12 @@ class KPCNN(nn.Module):
block_in_layer += 1
# Update dimension of input from output
if 'simple' in block:
in_dim = out_dim // 2
else:
in_dim = out_dim
# Detect change to a subsampled layer
if 'pool' in block or 'strided' in block:
# Update radius and feature dimension for next layer
@ -245,6 +249,9 @@ class KPFCNN(nn.Module):
config))
# Update dimension of input from output
if 'simple' in block:
in_dim = out_dim // 2
else:
in_dim = out_dim
# Detect change to a subsampled layer

View file

@ -497,7 +497,7 @@ class SimpleBlock(nn.Module):
self.KPConv = KPConv(config.num_kernel_points,
config.in_points_dim,
in_dim,
out_dim,
out_dim // 2,
current_extent,
radius,
fixed_kernel_points=config.fixed_kernel_points,
@ -507,7 +507,7 @@ class SimpleBlock(nn.Module):
modulated=config.modulated)
# Other opperations
self.batch_norm = BatchNormBlock(out_dim, self.use_bn, self.bn_momentum)
self.batch_norm = BatchNormBlock(out_dim // 2, self.use_bn, self.bn_momentum)
self.leaky_relu = nn.LeakyReLU(0.1)
return
@ -549,16 +549,16 @@ class ResnetBottleneckBlock(nn.Module):
self.layer_ind = layer_ind
# First downscaling mlp
if in_dim != out_dim // 2:
self.unary1 = UnaryBlock(in_dim, out_dim // 2, self.use_bn, self.bn_momentum)
if in_dim != out_dim // 4:
self.unary1 = UnaryBlock(in_dim, out_dim // 4, self.use_bn, self.bn_momentum)
else:
self.unary1 = nn.Identity()
# KPConv block
self.KPConv = KPConv(config.num_kernel_points,
config.in_points_dim,
out_dim // 2,
out_dim // 2,
out_dim // 4,
out_dim // 4,
current_extent,
radius,
fixed_kernel_points=config.fixed_kernel_points,
@ -566,10 +566,10 @@ class ResnetBottleneckBlock(nn.Module):
aggregation_mode=config.aggregation_mode,
deformable='deform' in block_name,
modulated=config.modulated)
self.batch_norm_conv = BatchNormBlock(out_dim // 2, self.use_bn, self.bn_momentum)
self.batch_norm_conv = BatchNormBlock(out_dim // 4, self.use_bn, self.bn_momentum)
# Second upscaling mlp
self.unary2 = UnaryBlock(out_dim // 2, out_dim, self.use_bn, self.bn_momentum, no_relu=True)
self.unary2 = UnaryBlock(out_dim // 4, out_dim, self.use_bn, self.bn_momentum, no_relu=True)
# Shortcut optional mpl
if in_dim != out_dim:

View file

@ -1376,12 +1376,14 @@ def S3DIS_first(old_result_limit):
"""
Test first S3DIS. First two test have all symetries (even vertical), which is not good). We corecct for
the following.
Then we try some experiments with different input scalea and the results are not as high as expected. WHY?
Then we try some experiments with different input scalea and the results are not as high as expected.
WHY?
FOUND IT! Problem resnet bottleneck should divide out-dim by 4 and not by 2
"""
# Using the dates of the logs, you can easily gather consecutive ones. All logs should be of the same dataset.
start = 'Log_2020-03-25_19-30-17'
end = 'Log_2020-04-25_19-30-17'
end = 'Log_2020-04-03_11-12-05'
if end < old_result_limit:
res_path = 'old_results'
@ -1399,6 +1401,35 @@ def S3DIS_first(old_result_limit):
'Fin=5_R=2.5_r=0.04',
'original_normal',
'original_deform',
'original_random_sampler',
'original_potentials_batch16',
'test']
logs_names = np.array(logs_names[:len(logs)])
return logs, logs_names
def S3DIS_(old_result_limit):
"""
Test S3DIS.
"""
# Using the dates of the logs, you can easily gather consecutive ones. All logs should be of the same dataset.
start = 'Log_2020-04-03_11-12-07'
end = 'Log_2020-04-25_19-30-17'
if end < old_result_limit:
res_path = 'old_results'
else:
res_path = 'results'
logs = np.sort([join(res_path, l) for l in listdir(res_path) if start <= l <= end])
logs = logs.astype('<U50')
# Give names to the logs (for legends)
logs_names = ['R=2.0_r=0.04_Din=128_potential',
'R=2.0_r=0.04_Din=64_potential',
'test']
logs_names = np.array(logs_names[:len(logs)])
@ -1416,7 +1447,7 @@ if __name__ == '__main__':
old_res_lim = 'Log_2020-03-25_19-30-17'
# My logs: choose the logs to show
logs, logs_names = S3DIS_first(old_res_lim)
logs, logs_names = S3DIS_(old_res_lim)
#os.environ['QT_DEBUG_PLUGINS'] = '1'
######################################################

View file

@ -76,9 +76,9 @@ class S3DISConfig(Config):
'resnetb_strided',
'resnetb',
'resnetb_strided',
'resnetb_deformable',
'resnetb_deformable_strided',
'resnetb_deformable',
'resnetb',
'resnetb_strided',
'resnetb',
'nearest_upsample',
'unary',
'nearest_upsample',
@ -117,6 +117,7 @@ class S3DISConfig(Config):
aggregation_mode = 'sum'
# Choice of input features
first_features_dim = 64
in_features_dim = 5
# Can the network learn modulations
@ -161,8 +162,8 @@ class S3DISConfig(Config):
augment_scale_anisotropic = True
augment_symmetries = [True, False, False]
augment_rotation = 'vertical'
augment_scale_min = 0.9
augment_scale_max = 1.1
augment_scale_min = 0.8
augment_scale_max = 1.2
augment_noise = 0.001
augment_color = 0.8
@ -189,13 +190,8 @@ if __name__ == '__main__':
# Initialize the environment
############################
# TODO: 9 millions de parametres au lieu de 14 millions... Pourquoi?
# TODO: radius des strided 2 fois trop grand
# TODO: implement un sampler plus simple
# TODO: test batch size a 16
# Set which gpu is going to be used
GPU_ID = '1'
GPU_ID = '2'
# Set GPU visible device
os.environ['CUDA_VISIBLE_DEVICES'] = GPU_ID
@ -245,8 +241,8 @@ if __name__ == '__main__':
config.saving_path = sys.argv[1]
# Initialize datasets
training_dataset = S3DISDataset(config, set='training')
test_dataset = S3DISDataset(config, set='validation')
training_dataset = S3DISDataset(config, set='training', use_potentials=True)
test_dataset = S3DISDataset(config, set='validation', use_potentials=True)
# Initialize samplers
training_sampler = S3DISSampler(training_dataset)
@ -280,8 +276,18 @@ if __name__ == '__main__':
# Define network model
t1 = time.time()
net = KPFCNN(config)
debug = False
if debug:
print('\n*************************************\n')
print(net)
print('\n*************************************\n')
for param in net.parameters():
if param.requires_grad:
print(param.shape)
print('\n*************************************\n')
print("Model size %i" % sum(param.numel() for param in net.parameters() if param.requires_grad))
print('\n*************************************\n')
# Define a trainer class
trainer = ModelTrainer(net, config, chkp_path=chosen_chkp)