adding NPM3D support
This commit is contained in:
parent
4cebd543d7
commit
7adbf9eb9f
1702
datasets/NPM3D.py
Normal file
1702
datasets/NPM3D.py
Normal file
File diff suppressed because it is too large
Load diff
307
train_NPM3D.py
Normal file
307
train_NPM3D.py
Normal file
|
@ -0,0 +1,307 @@
|
|||
#
|
||||
#
|
||||
# 0=================================0
|
||||
# | Kernel Point Convolutions |
|
||||
# 0=================================0
|
||||
#
|
||||
#
|
||||
# ----------------------------------------------------------------------------------------------------------------------
|
||||
#
|
||||
# Callable script to start a training on NPM3D dataset
|
||||
#
|
||||
# ----------------------------------------------------------------------------------------------------------------------
|
||||
#
|
||||
# Hugues THOMAS - 06/03/2020
|
||||
#
|
||||
|
||||
|
||||
# ----------------------------------------------------------------------------------------------------------------------
|
||||
#
|
||||
# Imports and global variables
|
||||
# \**********************************/
|
||||
#
|
||||
|
||||
# Common libs
|
||||
import signal
|
||||
import os
|
||||
|
||||
# Dataset
|
||||
from datasets.NPM3D import *
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
from utils.config import Config
|
||||
from utils.trainer import ModelTrainer
|
||||
from models.architectures import KPFCNN
|
||||
|
||||
|
||||
# ----------------------------------------------------------------------------------------------------------------------
|
||||
#
|
||||
# Config Class
|
||||
# \******************/
|
||||
#
|
||||
|
||||
class NPM3DConfig(Config):
|
||||
"""
|
||||
Override the parameters you want to modify for this dataset
|
||||
"""
|
||||
|
||||
####################
|
||||
# Dataset parameters
|
||||
####################
|
||||
|
||||
# Dataset name
|
||||
dataset = 'NPM3D'
|
||||
|
||||
# Number of classes in the dataset (This value is overwritten by dataset class when Initializating dataset).
|
||||
num_classes = None
|
||||
|
||||
# Type of task performed on this dataset (also overwritten)
|
||||
dataset_task = ''
|
||||
|
||||
# Number of CPU threads for the input pipeline
|
||||
input_threads = 10
|
||||
|
||||
#########################
|
||||
# Architecture definition
|
||||
#########################
|
||||
|
||||
# # Define layers
|
||||
architecture = ['simple',
|
||||
'resnetb',
|
||||
'resnetb_strided',
|
||||
'resnetb',
|
||||
'resnetb',
|
||||
'resnetb_strided',
|
||||
'resnetb',
|
||||
'resnetb',
|
||||
'resnetb_strided',
|
||||
'resnetb',
|
||||
'resnetb',
|
||||
'resnetb_strided',
|
||||
'resnetb',
|
||||
'resnetb',
|
||||
'nearest_upsample',
|
||||
'unary',
|
||||
'nearest_upsample',
|
||||
'unary',
|
||||
'nearest_upsample',
|
||||
'unary',
|
||||
'nearest_upsample',
|
||||
'unary']
|
||||
|
||||
###################
|
||||
# KPConv parameters
|
||||
###################
|
||||
|
||||
# Number of kernel points
|
||||
num_kernel_points = 15
|
||||
|
||||
# Radius of the input sphere (decrease value to reduce memory cost)
|
||||
in_radius = 3.0
|
||||
|
||||
# Size of the first subsampling grid in meter (increase value to reduce memory cost)
|
||||
first_subsampling_dl = 0.06
|
||||
|
||||
# Radius of convolution in "number grid cell". (2.5 is the standard value)
|
||||
conv_radius = 2.5
|
||||
|
||||
# Radius of deformable convolution in "number grid cell". Larger so that deformed kernel can spread out
|
||||
deform_radius = 5.0
|
||||
|
||||
# Radius of the area of influence of each kernel point in "number grid cell". (1.0 is the standard value)
|
||||
KP_extent = 1.2
|
||||
|
||||
# Behavior of convolutions in ('constant', 'linear', 'gaussian')
|
||||
KP_influence = 'linear'
|
||||
|
||||
# Aggregation function of KPConv in ('closest', 'sum')
|
||||
aggregation_mode = 'sum'
|
||||
|
||||
# Choice of input features
|
||||
first_features_dim = 128
|
||||
in_features_dim = 1
|
||||
|
||||
# Can the network learn modulations
|
||||
modulated = False
|
||||
|
||||
# Batch normalization parameters
|
||||
use_batch_norm = True
|
||||
batch_norm_momentum = 0.02
|
||||
|
||||
# Deformable offset loss
|
||||
# 'point2point' fitting geometry by penalizing distance from deform point to input points
|
||||
# 'point2plane' fitting geometry by penalizing distance from deform point to input point triplet (not implemented)
|
||||
deform_fitting_mode = 'point2point'
|
||||
deform_fitting_power = 1.0 # Multiplier for the fitting/repulsive loss
|
||||
deform_lr_factor = 0.1 # Multiplier for learning rate applied to the deformations
|
||||
repulse_extent = 1.2 # Distance of repulsion for deformed kernel points
|
||||
|
||||
#####################
|
||||
# Training parameters
|
||||
#####################
|
||||
|
||||
# Maximal number of epochs
|
||||
max_epoch = 500
|
||||
|
||||
# Learning rate management
|
||||
learning_rate = 1e-2
|
||||
momentum = 0.98
|
||||
lr_decays = {i: 0.1 ** (1 / 150) for i in range(1, max_epoch)}
|
||||
grad_clip_norm = 100.0
|
||||
|
||||
# Number of batch (decrease to reduce memory cost, but it should remain > 3 for stability)
|
||||
batch_num = 6
|
||||
|
||||
# Number of steps per epochs
|
||||
epoch_steps = 500
|
||||
|
||||
# Number of validation examples per epoch
|
||||
validation_size = 50
|
||||
|
||||
# Number of epoch between each checkpoint
|
||||
checkpoint_gap = 50
|
||||
|
||||
# Augmentations
|
||||
augment_scale_anisotropic = True
|
||||
augment_symmetries = [True, False, False]
|
||||
augment_rotation = 'vertical'
|
||||
augment_scale_min = 0.9
|
||||
augment_scale_max = 1.1
|
||||
augment_noise = 0.001
|
||||
augment_color = 0.8
|
||||
|
||||
# The way we balance segmentation loss
|
||||
# > 'none': Each point in the whole batch has the same contribution.
|
||||
# > 'class': Each class has the same contribution (points are weighted according to class balance)
|
||||
# > 'batch': Each cloud in the batch has the same contribution (points are weighted according cloud sizes)
|
||||
segloss_balance = 'none'
|
||||
|
||||
# Do we nee to save convergence
|
||||
saving = True
|
||||
saving_path = None
|
||||
|
||||
|
||||
# ----------------------------------------------------------------------------------------------------------------------
|
||||
#
|
||||
# Main Call
|
||||
# \***************/
|
||||
#
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
############################
|
||||
# Initialize the environment
|
||||
############################
|
||||
|
||||
# Set which gpu is going to be used
|
||||
GPU_ID = '0'
|
||||
|
||||
# Set GPU visible device
|
||||
os.environ['CUDA_VISIBLE_DEVICES'] = GPU_ID
|
||||
|
||||
###############
|
||||
# Previous chkp
|
||||
###############
|
||||
|
||||
# Choose here if you want to start training from a previous snapshot (None for new training)
|
||||
# previous_training_path = 'Log_2020-03-19_19-53-27'
|
||||
previous_training_path = ''
|
||||
|
||||
# Choose index of checkpoint to start from. If None, uses the latest chkp
|
||||
chkp_idx = None
|
||||
if previous_training_path:
|
||||
|
||||
# Find all snapshot in the chosen training folder
|
||||
chkp_path = os.path.join('results', previous_training_path, 'checkpoints')
|
||||
chkps = [f for f in os.listdir(chkp_path) if f[:4] == 'chkp']
|
||||
|
||||
# Find which snapshot to restore
|
||||
if chkp_idx is None:
|
||||
chosen_chkp = 'current_chkp.tar'
|
||||
else:
|
||||
chosen_chkp = np.sort(chkps)[chkp_idx]
|
||||
chosen_chkp = os.path.join('results', previous_training_path, 'checkpoints', chosen_chkp)
|
||||
|
||||
else:
|
||||
chosen_chkp = None
|
||||
|
||||
##############
|
||||
# Prepare Data
|
||||
##############
|
||||
|
||||
print()
|
||||
print('Data Preparation')
|
||||
print('****************')
|
||||
|
||||
# Initialize configuration class
|
||||
config = NPM3DConfig()
|
||||
if previous_training_path:
|
||||
config.load(os.path.join('results', previous_training_path))
|
||||
config.saving_path = None
|
||||
|
||||
# Get path from argument if given
|
||||
if len(sys.argv) > 1:
|
||||
config.saving_path = sys.argv[1]
|
||||
|
||||
# Initialize datasets
|
||||
training_dataset = NPM3DDataset(config, set='training', use_potentials=True)
|
||||
test_dataset = NPM3DDataset(config, set='validation', use_potentials=True)
|
||||
|
||||
# Initialize samplers
|
||||
training_sampler = NPM3DSampler(training_dataset)
|
||||
test_sampler = NPM3DSampler(test_dataset)
|
||||
|
||||
# Initialize the dataloader
|
||||
training_loader = DataLoader(training_dataset,
|
||||
batch_size=1,
|
||||
sampler=training_sampler,
|
||||
collate_fn=NPM3DCollate,
|
||||
num_workers=config.input_threads,
|
||||
pin_memory=True)
|
||||
test_loader = DataLoader(test_dataset,
|
||||
batch_size=1,
|
||||
sampler=test_sampler,
|
||||
collate_fn=NPM3DCollate,
|
||||
num_workers=config.input_threads,
|
||||
pin_memory=True)
|
||||
|
||||
# Calibrate samplers
|
||||
training_sampler.calibration(training_loader, verbose=True)
|
||||
test_sampler.calibration(test_loader, verbose=True)
|
||||
|
||||
# Optional debug functions
|
||||
# debug_timing(training_dataset, training_loader)
|
||||
# debug_timing(test_dataset, test_loader)
|
||||
# debug_upsampling(training_dataset, training_loader)
|
||||
|
||||
print('\nModel Preparation')
|
||||
print('*****************')
|
||||
|
||||
# Define network model
|
||||
t1 = time.time()
|
||||
net = KPFCNN(config, training_dataset.label_values, training_dataset.ignored_labels)
|
||||
|
||||
debug = False
|
||||
if debug:
|
||||
print('\n*************************************\n')
|
||||
print(net)
|
||||
print('\n*************************************\n')
|
||||
for param in net.parameters():
|
||||
if param.requires_grad:
|
||||
print(param.shape)
|
||||
print('\n*************************************\n')
|
||||
print("Model size %i" % sum(param.numel() for param in net.parameters() if param.requires_grad))
|
||||
print('\n*************************************\n')
|
||||
|
||||
# Define a trainer class
|
||||
trainer = ModelTrainer(net, config, chkp_path=chosen_chkp)
|
||||
print('Done in {:.1f}s\n'.format(time.time() - t1))
|
||||
|
||||
print('\nStart training')
|
||||
print('**************')
|
||||
|
||||
# Training
|
||||
trainer.train(net, training_loader, test_loader, config)
|
||||
|
||||
print('Forcing exit now')
|
||||
os.kill(os.getpid(), signal.SIGINT)
|
Loading…
Reference in a new issue