Corrections

This commit is contained in:
HuguesTHOMAS 2020-04-27 18:01:40 -04:00
parent 7a4530f8e0
commit b4e1a9dcc9
16 changed files with 306 additions and 2541 deletions

View file

@ -805,38 +805,10 @@ class ModelNet40CustomBatch:
return all_p_list
def ModelNet40Collate(batch_data):
return ModelNet40CustomBatch(batch_data)
class ModelNet40WorkerInitDebug():
"""Callable class that Initializes workers."""
def __init__(self, dataset):
self.dataset = dataset
return
def __call__(self, worker_id):
# Print workers info
worker_info = get_worker_info()
print(worker_info)
# Get associated dataset
dataset = worker_info.dataset # the dataset copy in this worker process
# In windows, each worker has its own copy of the dataset. In Linux, this is shared in memory
print(dataset.input_labels.__array_interface__['data'])
print(worker_info.dataset.input_labels.__array_interface__['data'])
print(self.dataset.input_labels.__array_interface__['data'])
# configure the dataset to only process the split workload
return
# ----------------------------------------------------------------------------------------------------------------------
#
# Debug functions
@ -994,3 +966,30 @@ def debug_batch_and_neighbors_calib(dataset, sampler, loader):
_, counts = np.unique(dataset.input_labels, return_counts=True)
print(counts)
class ModelNet40WorkerInitDebug:
"""Callable class that Initializes workers."""
def __init__(self, dataset):
self.dataset = dataset
return
def __call__(self, worker_id):
# Print workers info
worker_info = get_worker_info()
print(worker_info)
# Get associated dataset
dataset = worker_info.dataset # the dataset copy in this worker process
# In windows, each worker has its own copy of the dataset. In Linux, this is shared in memory
print(dataset.input_labels.__array_interface__['data'])
print(worker_info.dataset.input_labels.__array_interface__['data'])
print(self.dataset.input_labels.__array_interface__['data'])
# configure the dataset to only process the split workload
return

View file

@ -28,7 +28,6 @@ import numpy as np
import pickle
import torch
import math
#from mayavi import mlab
from multiprocessing import Lock
@ -877,7 +876,6 @@ class S3DISDataset(PointCloudDataset):
return np.vstack((data['x'], data['y'], data['z'])).T
# ----------------------------------------------------------------------------------------------------------------------
#
# Utility classes definition

View file

@ -28,7 +28,6 @@ import numpy as np
import pickle
import torch
import yaml
#from mayavi import mlab
from multiprocessing import Lock
@ -245,9 +244,6 @@ class SemanticKittiDataset(PointCloudDataset):
merged_labels = np.zeros((0,), dtype=np.int32)
merged_coords = np.zeros((0, 4), dtype=np.float32)
# In case of validation also keep original point and reproj indices
# Get center of the first frame in world coordinates
p_origin = np.zeros((1, 4))
p_origin[0, 3] = 1
@ -346,11 +342,6 @@ class SemanticKittiDataset(PointCloudDataset):
# Merge n_frames together
#########################
# Too see yielding speed with debug timings method, collapse points (reduce mapping time to nearly 0)
#merged_points = merged_points[:100, :]
#merged_labels = merged_labels[:100]
#merged_points *= 0.1
# Subsample merged frames
in_pts, in_fts, in_lbls = grid_subsampling(merged_points,
features=merged_coords,
@ -455,8 +446,8 @@ class SemanticKittiDataset(PointCloudDataset):
else:
raise ValueError('Only accepted input dimensions are 1, 4 and 7 (without and with XYZ)')
t += [time.time()]
#######################
# Create network inputs
#######################
@ -546,27 +537,6 @@ class SemanticKittiDataset(PointCloudDataset):
ti += 1
print('\n************************\n')
# Timings: (in test configuration)
# Lock ...... 0.1ms
# Init ...... 0.0ms
# Load ...... 40.0ms
# subs ...... 143.6ms
# drop ...... 4.6ms
# reproj .... 297.4ms
# augment ... 7.5ms
# stack ..... 0.0ms
# concat .... 1.4ms
# input ..... 816.0ms
# stack ..... 0.0ms
# TODO: Where can we gain time for the robot real time test?
# > Load: no disk read necessary + pose useless if we only use one frame for testing
# > Drop: We can drop even more points. Random choice could be faster without replace=False
# > reproj: No reprojection needed
# > Augment: See which data agment we want at test time
# > input: MAIN BOTTLENECK. We need to see if we can do faster, maybe with some parallelisation. neighbors
# and subsampling accelerated with lidar frame order
return [self.config.num_layers] + input_list
def load_calib_poses(self):
@ -744,6 +714,12 @@ class SemanticKittiDataset(PointCloudDataset):
return poses
# ----------------------------------------------------------------------------------------------------------------------
#
# Utility classes definition
# \********************************/
class SemanticKittiSampler(Sampler):
"""Sampler for SemanticKitti"""
@ -1390,6 +1366,12 @@ def SemanticKittiCollate(batch_data):
return SemanticKittiCustomBatch(batch_data)
# ----------------------------------------------------------------------------------------------------------------------
#
# Debug functions
# \*********************/
def debug_timing(dataset, loader):
"""Timing of generator function"""

View file

@ -74,7 +74,8 @@ def grid_subsampling(points, features=None, labels=None, sampleDl=0.1, verbose=0
verbose=verbose)
def batch_grid_subsampling(points, batches_len, features=None, labels=None, sampleDl=0.1, max_p=0, verbose=0):
def batch_grid_subsampling(points, batches_len, features=None, labels=None,
sampleDl=0.1, max_p=0, verbose=0, random_grid_orient=True):
"""
CPP wrapper for a grid subsampling (method = barycenter for points and features)
:param points: (N, 3) matrix of input points
@ -85,34 +86,100 @@ def batch_grid_subsampling(points, batches_len, features=None, labels=None, samp
:return: subsampled points, with features and/or labels depending of the input
"""
R = None
B = len(batches_len)
if random_grid_orient:
########################################################
# Create a random rotation matrix for each batch element
########################################################
# Choose two random angles for the first vector in polar coordinates
theta = np.random.rand(B) * 2 * np.pi
phi = (np.random.rand(B) - 0.5) * np.pi
# Create the first vector in carthesian coordinates
u = np.vstack([np.cos(theta) * np.cos(phi), np.sin(theta) * np.cos(phi), np.sin(phi)])
# Choose a random rotation angle
alpha = np.random.rand(B) * 2 * np.pi
# Create the rotation matrix with this vector and angle
R = create_3D_rotations(u.T, alpha).astype(np.float32)
#################
# Apply rotations
#################
i0 = 0
points = points.copy()
for bi, length in enumerate(batches_len):
# Apply the rotation
points[i0:i0 + length, :] = np.sum(np.expand_dims(points[i0:i0 + length, :], 2) * R[bi], axis=1)
i0 += length
#######################
# Sunsample and realign
#######################
if (features is None) and (labels is None):
return cpp_subsampling.subsample_batch(points,
batches_len,
sampleDl=sampleDl,
max_p=max_p,
verbose=verbose)
s_points, s_len = cpp_subsampling.subsample_batch(points,
batches_len,
sampleDl=sampleDl,
max_p=max_p,
verbose=verbose)
if random_grid_orient:
i0 = 0
for bi, length in enumerate(s_len):
s_points[i0:i0 + length, :] = np.sum(np.expand_dims(s_points[i0:i0 + length, :], 2) * R[bi].T, axis=1)
i0 += length
return s_points, s_len
elif (labels is None):
return cpp_subsampling.subsample_batch(points,
batches_len,
features=features,
sampleDl=sampleDl,
max_p=max_p,
verbose=verbose)
s_points, s_len, s_features = cpp_subsampling.subsample_batch(points,
batches_len,
features=features,
sampleDl=sampleDl,
max_p=max_p,
verbose=verbose)
if random_grid_orient:
i0 = 0
for bi, length in enumerate(s_len):
# Apply the rotation
s_points[i0:i0 + length, :] = np.sum(np.expand_dims(s_points[i0:i0 + length, :], 2) * R[bi].T, axis=1)
i0 += length
return s_points, s_len, s_features
elif (features is None):
return cpp_subsampling.subsample_batch(points,
batches_len,
classes=labels,
sampleDl=sampleDl,
max_p=max_p,
verbose=verbose)
s_points, s_len, s_labels = cpp_subsampling.subsample_batch(points,
batches_len,
classes=labels,
sampleDl=sampleDl,
max_p=max_p,
verbose=verbose)
if random_grid_orient:
i0 = 0
for bi, length in enumerate(s_len):
# Apply the rotation
s_points[i0:i0 + length, :] = np.sum(np.expand_dims(s_points[i0:i0 + length, :], 2) * R[bi].T, axis=1)
i0 += length
return s_points, s_len, s_labels
else:
return cpp_subsampling.subsample_batch(points,
batches_len,
features=features,
classes=labels,
sampleDl=sampleDl,
max_p=max_p,
verbose=verbose)
s_points, s_len, s_features, s_labels = cpp_subsampling.subsample_batch(points,
batches_len,
features=features,
classes=labels,
sampleDl=sampleDl,
max_p=max_p,
verbose=verbose)
if random_grid_orient:
i0 = 0
for bi, length in enumerate(s_len):
# Apply the rotation
s_points[i0:i0 + length, :] = np.sum(np.expand_dims(s_points[i0:i0 + length, :], 2) * R[bi].T, axis=1)
i0 += length
return s_points, s_len, s_features, s_labels
def batch_neighbors(queries, supports, q_batches, s_batches, radius):
@ -499,8 +566,6 @@ class PointCloudDataset(Dataset):
# Return inputs
###############
# Save deform layers
# list of network inputs
li = input_points + input_neighbors + input_pools + input_upsamples + input_stack_lengths
li += [stacked_features, labels]

View file

@ -74,6 +74,7 @@ def create_3D_rotations(axis, angle):
return np.reshape(R, (-1, 3, 3))
def spherical_Lloyd(radius, num_cells, dimension=3, fixed='center', approximation='monte-carlo',
approx_n=5000, max_iter=500, momentum=0.9, verbose=0):
"""

View file

@ -44,12 +44,8 @@ def p2p_fitting_regularizer(net):
# Fitting loss
##############
# Get the distance to closest input point
KP_min_d2, _ = torch.min(m.deformed_d2, dim=1)
# Normalize KP locations to be independant from layers
KP_min_d2 = KP_min_d2 / (m.KP_extent ** 2)
# Get the distance to closest input point and normalize to be independant from layers
KP_min_d2 = m.min_d2 / (m.KP_extent ** 2)
# Loss will be the square distance to closest input point. We use L1 because dist is already squared
fitting_loss += net.l1(KP_min_d2, torch.zeros_like(KP_min_d2))
@ -65,11 +61,11 @@ def p2p_fitting_regularizer(net):
for i in range(net.K):
other_KP = torch.cat([KP_locs[:, :i, :], KP_locs[:, i + 1:, :]], dim=1).detach()
distances = torch.sqrt(torch.sum((other_KP - KP_locs[:, i:i + 1, :]) ** 2, dim=2))
rep_loss = torch.sum(torch.clamp_max(distances - 1.0, max=0.0) ** 2, dim=1)
rep_loss = torch.sum(torch.clamp_max(distances - net.repulse_extent, max=0.0) ** 2, dim=1)
repulsive_loss += net.l1(rep_loss, torch.zeros_like(rep_loss)) / net.K
# The hook effectively affect both regularizer and output loss. So here we have to divide by deform_loss_power
return (net.deform_fitting_power / net.deform_loss_power) * (fitting_loss + repulsive_loss)
return (net.deform_fitting_power / net.deform_loss_power) * (2 * fitting_loss + repulsive_loss)
class KPCNN(nn.Module):
@ -144,6 +140,7 @@ class KPCNN(nn.Module):
self.deform_fitting_mode = config.deform_fitting_mode
self.deform_fitting_power = config.deform_fitting_power
self.deform_loss_power = config.deform_loss_power
self.repulse_extent = config.repulse_extent
self.output_loss = 0
self.reg_loss = 0
self.l1 = nn.L1Loss()
@ -329,6 +326,7 @@ class KPFCNN(nn.Module):
self.deform_fitting_mode = config.deform_fitting_mode
self.deform_fitting_power = config.deform_fitting_power
self.deform_loss_power = config.deform_loss_power
self.repulse_extent = config.repulse_extent
self.output_loss = 0
self.reg_loss = 0
self.l1 = nn.L1Loss()

View file

@ -174,8 +174,10 @@ class KPConv(nn.Module):
self.deformable = deformable
self.modulated = modulated
self.in_offset_channels = in_channels
# Running variable containing deformed KP distance to input points. (used in regularization loss)
self.deformed_d2 = None
self.min_d2 = None
self.deformed_KP = None
self.offset_features = None
@ -191,7 +193,7 @@ class KPConv(nn.Module):
self.offset_dim = self.p_dim * self.K
self.offset_conv = KPConv(self.K,
self.p_dim,
in_channels,
self.in_offset_channels,
self.offset_dim,
KP_extent,
radius,
@ -241,7 +243,10 @@ class KPConv(nn.Module):
###################
if self.deformable:
self.offset_features = self.offset_conv(q_pts, s_pts, neighb_inds, x) + self.offset_bias
# Get offsets with a KPConv that only takes part of the features
x_offsets = x[:, :self.in_offset_channels]
self.offset_features = self.offset_conv(q_pts, s_pts, neighb_inds, x_offsets) + self.offset_bias
if self.modulated:
@ -295,18 +300,33 @@ class KPConv(nn.Module):
sq_distances = torch.sum(differences ** 2, dim=3)
# Optimization by ignoring points outside a deformed KP range
if False and self.deformable:
if self.deformable:
# Save distances for loss
self.min_d2, _ = torch.min(sq_distances, dim=1)
# Boolean of the neighbors in range of a kernel point [n_points, n_neighbors]
in_range = torch.any(sq_distances < self.KP_extent ** 2, dim=2)
in_range = torch.any(sq_distances < self.KP_extent ** 2, dim=2).type(torch.int32)
# New value of max neighbors
new_max_neighb = torch.max(torch.sum(in_range, dim=1))
print(sq_distances.shape[1], '=>', new_max_neighb.item())
# For each row of neighbors, indices of the ones that are in range [n_points, new_max_neighb]
neighb_row_bool, neighb_row_inds = torch.topk(in_range, new_max_neighb.item(), dim=1)
# Save distances for loss
if self.deformable:
self.deformed_d2 = sq_distances
# Gather new neighbor indices [n_points, new_max_neighb]
new_neighb_inds = neighb_inds.gather(1, neighb_row_inds, sparse_grad=False)
# Gather new distances to KP [n_points, new_max_neighb, n_kpoints]
neighb_row_inds.unsqueeze_(2)
neighb_row_inds = neighb_row_inds.expand(-1, -1, self.K)
sq_distances = sq_distances.gather(1, neighb_row_inds, sparse_grad=False)
# New shadow neighbors have to point to the last shadow point
new_neighb_inds *= neighb_row_bool
new_neighb_inds -= (neighb_row_bool.type(torch.int64) - 1) * int(s_pts.shape[0] - 1)
else:
new_neighb_inds = neighb_inds
# Get Kernel point influences [n_points, n_kpoints, n_neighbors]
if self.KP_influence == 'constant':
@ -339,7 +359,7 @@ class KPConv(nn.Module):
x = torch.cat((x, torch.zeros_like(x[:1, :])), 0)
# Get the features of each neighborhood [n_points, n_neighbors, in_fdim]
neighb_x = gather(x, neighb_inds)
neighb_x = gather(x, new_neighb_inds)
# Apply distance weights [n_points, n_kpoints, in_fdim]
weighted_features = torch.matmul(all_weights, neighb_x)

View file

@ -80,32 +80,6 @@ def running_mean(signal, n, axis=0, stride=1):
return None
def IoU_multi_metrics(all_IoUs, smooth_n):
# Get mean IoU for consecutive epochs to directly get a mean
all_mIoUs = [np.hstack([np.mean(obj_IoUs, axis=1) for obj_IoUs in epoch_IoUs]) for epoch_IoUs in all_IoUs]
smoothed_mIoUs = []
for epoch in range(len(all_mIoUs)):
i0 = max(epoch - smooth_n, 0)
i1 = min(epoch + smooth_n + 1, len(all_mIoUs))
smoothed_mIoUs += [np.mean(np.hstack(all_mIoUs[i0:i1]))]
# Get mean for each class
all_objs_mIoUs = [[np.mean(obj_IoUs, axis=1) for obj_IoUs in epoch_IoUs] for epoch_IoUs in all_IoUs]
smoothed_obj_mIoUs = []
for epoch in range(len(all_objs_mIoUs)):
i0 = max(epoch - smooth_n, 0)
i1 = min(epoch + smooth_n + 1, len(all_objs_mIoUs))
epoch_obj_mIoUs = []
for obj in range(len(all_objs_mIoUs[0])):
epoch_obj_mIoUs += [np.mean(np.hstack([objs_mIoUs[obj] for objs_mIoUs in all_objs_mIoUs[i0:i1]]))]
smoothed_obj_mIoUs += [epoch_obj_mIoUs]
return np.array(smoothed_mIoUs), np.array(smoothed_obj_mIoUs)
def IoU_class_metrics(all_IoUs, smooth_n):
# Get mean IoU per class for consecutive epochs to directly get a mean without further smoothing
@ -215,66 +189,11 @@ def load_snap_clouds(path, dataset, only_last=False):
return cloud_epochs, IoU_from_confusions(Confs)
def load_multi_snap_clouds(path, dataset, file_i, only_last=False):
cloud_folders = np.array([join(path, f) for f in listdir(path) if f.startswith('val_preds')])
cloud_epochs = np.array([int(f.split('_')[-1]) for f in cloud_folders])
epoch_order = np.argsort(cloud_epochs)
cloud_epochs = cloud_epochs[epoch_order]
cloud_folders = cloud_folders[epoch_order]
if len(cloud_folders) > 0:
dataset_folders = [f for f in listdir(cloud_folders[0]) if dataset.name in f]
cloud_folders = [join(f, dataset_folders[file_i]) for f in cloud_folders]
Confs = np.zeros((len(cloud_epochs), dataset.num_classes, dataset.num_classes), dtype=np.int32)
for c_i, cloud_folder in enumerate(cloud_folders):
if only_last and c_i < len(cloud_epochs) - 1:
continue
# Load confusion if previously saved
conf_file = join(cloud_folder, 'conf_{:s}.txt'.format(dataset.name))
if isfile(conf_file):
Confs[c_i] += np.loadtxt(conf_file, dtype=np.int32)
else:
for f in listdir(cloud_folder):
if f.endswith('.ply') and not f.endswith('sub.ply'):
if np.any([cloud_path.endswith(f) for cloud_path in dataset.files]):
data = read_ply(join(cloud_folder, f))
labels = data['class']
preds = data['preds']
Confs[c_i] += confusion_matrix(labels, preds, dataset.label_values).astype(np.int32)
np.savetxt(conf_file, Confs[c_i], '%12d')
# Erase ply to save disk memory
if c_i < len(cloud_folders) - 1:
for f in listdir(cloud_folder):
if f.endswith('.ply'):
remove(join(cloud_folder, f))
# Remove ignored labels from confusions
for l_ind, label_value in reversed(list(enumerate(dataset.label_values))):
if label_value in dataset.ignored_labels:
Confs = np.delete(Confs, l_ind, axis=1)
Confs = np.delete(Confs, l_ind, axis=2)
return cloud_epochs, IoU_from_confusions(Confs)
def load_multi_IoU(filename, n_parts):
with open(filename, 'r') as f:
lines = f.readlines()
# Load all IoUs
all_IoUs = []
for i, line in enumerate(lines):
obj_IoUs = [[float(IoU) for IoU in s.split()] for s in line.split('/')]
obj_IoUs = [np.reshape(IoUs, [-1, n_parts[obj]]) for obj, IoUs in enumerate(obj_IoUs)]
all_IoUs += [obj_IoUs]
return all_IoUs
# ----------------------------------------------------------------------------------------------------------------------
#
# Plot functions
# \********************/
#
def compare_trainings(list_of_paths, list_of_labels=None):
@ -410,149 +329,6 @@ def compare_trainings(list_of_paths, list_of_labels=None):
plt.show()
def compare_convergences_multisegment(list_of_paths, list_of_labels=None):
# Parameters
# **********
steps_per_epoch = 0
smooth_n = 5
if list_of_labels is None:
list_of_labels = [str(i) for i in range(len(list_of_paths))]
# Read Logs
# *********
all_pred_epochs = []
all_instances_mIoUs = []
all_objs_mIoUs = []
all_objs_IoUs = []
all_parts = []
obj_list = ['Air', 'Bag', 'Cap', 'Car', 'Cha', 'Ear', 'Gui', 'Kni',
'Lam', 'Lap', 'Mot', 'Mug', 'Pis', 'Roc', 'Ska', 'Tab']
print('Objs | Inst | Air Bag Cap Car Cha Ear Gui Kni Lam Lap Mot Mug Pis Roc Ska Tab')
print('-----|------|--------------------------------------------------------------------------------')
for path in list_of_paths:
# Load parameters
config = Config()
config.load(path)
# Get the number of classes
n_parts = [4, 2, 2, 4, 4, 3, 3, 2, 4, 2, 6, 2, 3, 3, 3, 3]
part = config.dataset.split('_')[-1]
# Get validation confusions
file = join(path, 'val_IoUs.txt')
val_IoUs = load_multi_IoU(file, n_parts)
file = join(path, 'vote_IoUs.txt')
vote_IoUs = load_multi_IoU(file, n_parts)
#print(len(val_IoUs[0]))
#print(val_IoUs[0][0].shape)
# Get mean IoU
#instances_mIoUs, objs_mIoUs = IoU_multi_metrics(val_IoUs, smooth_n)
# Get mean IoU
instances_mIoUs, objs_mIoUs = IoU_multi_metrics(vote_IoUs, smooth_n)
# Aggregate results
all_pred_epochs += [np.array([i for i in range(len(val_IoUs))])]
all_instances_mIoUs += [instances_mIoUs]
all_objs_IoUs += [objs_mIoUs]
all_objs_mIoUs += [np.mean(objs_mIoUs, axis=1)]
if part == 'multi':
s = '{:4.1f} | {:4.1f} | '.format(100 * np.mean(objs_mIoUs[-1]), 100 * instances_mIoUs[-1])
for obj_mIoU in objs_mIoUs[-1]:
s += '{:4.1f} '.format(100 * obj_mIoU)
print(s)
else:
s = ' -- | -- | '
for obj_name in obj_list:
if part.startswith(obj_name):
s += '{:4.1f} '.format(100 * instances_mIoUs[-1])
else:
s += ' -- '.format(100 * instances_mIoUs[-1])
print(s)
all_parts += [part]
# Plots
# *****
if 'multi' in all_parts:
# Figure
fig = plt.figure('Instances mIoU')
for i, label in enumerate(list_of_labels):
if all_parts[i] == 'multi':
plt.plot(all_pred_epochs[i], all_instances_mIoUs[i], linewidth=1, label=label)
plt.xlabel('epochs')
plt.ylabel('IoU')
# Set limits for y axis
#plt.ylim(0.55, 0.95)
# Display legends and title
plt.legend(loc=4)
# Customize the graph
ax = fig.gca()
ax.grid(linestyle='-.', which='both')
#ax.set_yticks(np.arange(0.8, 1.02, 0.02))
# Figure
fig = plt.figure('mean of categories mIoU')
for i, label in enumerate(list_of_labels):
if all_parts[i] == 'multi':
plt.plot(all_pred_epochs[i], all_objs_mIoUs[i], linewidth=1, label=label)
plt.xlabel('epochs')
plt.ylabel('IoU')
# Set limits for y axis
#plt.ylim(0.8, 1)
# Display legends and title
plt.legend(loc=4)
# Customize the graph
ax = fig.gca()
ax.grid(linestyle='-.', which='both')
#ax.set_yticks(np.arange(0.8, 1.02, 0.02))
for obj_i, obj_name in enumerate(obj_list):
if np.any([part.startswith(obj_name) for part in all_parts]):
# Figure
fig = plt.figure(obj_name + ' mIoU')
for i, label in enumerate(list_of_labels):
if all_parts[i] == 'multi':
plt.plot(all_pred_epochs[i], all_objs_IoUs[i][:, obj_i], linewidth=1, label=label)
elif all_parts[i].startswith(obj_name):
plt.plot(all_pred_epochs[i], all_objs_mIoUs[i], linewidth=1, label=label)
plt.xlabel('epochs')
plt.ylabel('IoU')
# Set limits for y axis
#plt.ylim(0.8, 1)
# Display legends and title
plt.legend(loc=4)
# Customize the graph
ax = fig.gca()
ax.grid(linestyle='-.', which='both')
#ax.set_yticks(np.arange(0.8, 1.02, 0.02))
# Show all
plt.show()
def compare_convergences_segment(dataset, list_of_paths, list_of_names=None):
# Parameters
@ -784,168 +560,6 @@ def compare_convergences_classif(list_of_paths, list_of_labels=None):
plt.show()
def compare_convergences_multicloud(list_of_paths, multi, multi_datasets, list_of_names=None):
# Parameters
# **********
smooth_n = 10
if list_of_names is None:
list_of_names = [str(i) for i in range(len(list_of_paths))]
# Loop on all datasets:
for plot_dataset in multi_datasets:
print('\n')
print(plot_dataset)
print('*'*len(plot_dataset))
print()
# Load dataset parameters
if plot_dataset.startswith('S3DIS'):
dataset = S3DISDataset()
elif plot_dataset.startswith('Scann'):
dataset = ScannetDataset()
elif plot_dataset.startswith('Seman'):
dataset = Semantic3DDataset()
elif plot_dataset.startswith('NPM3D'):
dataset = NPM3DDataset()
else:
raise ValueError('Unsupported dataset : ' + plot_dataset)
# Read Logs
# *********
all_pred_epochs = []
all_mIoUs = []
all_class_IoUs = []
all_snap_epochs = []
all_snap_IoUs = []
all_names = []
class_list = [dataset.label_to_names[label] for label in dataset.label_values
if label not in dataset.ignored_labels]
s = '{:^10}|'.format('mean')
for c in class_list:
s += '{:^10}'.format(c)
print(s)
print(10*'-' + '|' + 10*dataset.num_classes*'-')
for log_i, (path, is_multi) in enumerate(zip(list_of_paths, multi)):
n_c = None
if is_multi:
config = MultiConfig()
config.load(path)
if plot_dataset in config.datasets:
val_IoU_files = []
for d_i in np.where(np.array(config.datasets) == plot_dataset)[0]:
n_c = config.num_classes[d_i]
val_IoU_files.append(join(path, 'val_IoUs_{:d}_{:s}.txt'.format(d_i, plot_dataset)))
else:
continue
else:
config = Config()
config.load(path)
if plot_dataset == config.dataset:
n_c = config.num_classes
val_IoU_files = [join(path, 'val_IoUs.txt')]
else:
continue
for file_i, file in enumerate(val_IoU_files):
# Load validation IoUs
val_IoUs = load_single_IoU(file, n_c)
# Get mean IoU
class_IoUs, mIoUs = IoU_class_metrics(val_IoUs, smooth_n)
# Aggregate results
all_pred_epochs += [np.array([i for i in range(len(val_IoUs))])]
all_mIoUs += [mIoUs]
all_class_IoUs += [class_IoUs]
all_names += [list_of_names[log_i]+'_{:d}'.format(file_i+1)]
s = '{:^10.1f}|'.format(100*mIoUs[-1])
for IoU in class_IoUs[-1]:
s += '{:^10.1f}'.format(100*IoU)
print(s)
# Get optional full validation on clouds
if is_multi:
snap_epochs, snap_IoUs = load_multi_snap_clouds(path, dataset, file_i)
else:
snap_epochs, snap_IoUs = load_snap_clouds(path, dataset)
all_snap_epochs += [snap_epochs]
all_snap_IoUs += [snap_IoUs]
print(10*'-' + '|' + 10*dataset.num_classes*'-')
for snap_IoUs in all_snap_IoUs:
if len(snap_IoUs) > 0:
s = '{:^10.1f}|'.format(100*np.mean(snap_IoUs[-1]))
for IoU in snap_IoUs[-1]:
s += '{:^10.1f}'.format(100*IoU)
else:
s = '{:^10s}'.format('-')
for _ in range(dataset.num_classes):
s += '{:^10s}'.format('-')
print(s)
# Plots
# *****
# Figure
fig = plt.figure('mIoUs')
for i, name in enumerate(all_names):
p = plt.plot(all_pred_epochs[i], all_mIoUs[i], '--', linewidth=1, label=name)
plt.plot(all_snap_epochs[i], np.mean(all_snap_IoUs[i], axis=1), linewidth=1, color=p[-1].get_color())
plt.title(plot_dataset)
plt.xlabel('epochs')
plt.ylabel('IoU')
# Set limits for y axis
#plt.ylim(0.55, 0.95)
# Display legends and title
plt.legend(loc=4)
# Customize the graph
ax = fig.gca()
ax.grid(linestyle='-.', which='both')
#ax.set_yticks(np.arange(0.8, 1.02, 0.02))
displayed_classes = [0, 1, 2, 3, 4, 5, 6, 7]
displayed_classes = []
for c_i, c_name in enumerate(class_list):
if c_i in displayed_classes:
# Figure
fig = plt.figure(c_name + ' IoU')
for i, name in enumerate(list_of_names):
plt.plot(all_pred_epochs[i], all_class_IoUs[i][:, c_i], linewidth=1, label=name)
plt.xlabel('epochs')
plt.ylabel('IoU')
# Set limits for y axis
#plt.ylim(0.8, 1)
# Display legends and title
plt.legend(loc=4)
# Customize the graph
ax = fig.gca()
ax.grid(linestyle='-.', which='both')
#ax.set_yticks(np.arange(0.8, 1.02, 0.02))
# Show all
plt.show()
def compare_convergences_SLAM(dataset, list_of_paths, list_of_names=None):
# Parameters
@ -1069,491 +683,79 @@ def compare_convergences_SLAM(dataset, list_of_paths, list_of_names=None):
# ----------------------------------------------------------------------------------------------------------------------
#
# Main Call
# \***************/
# Experiments
# \*****************/
#
def ModelNet40_first_test():
def experiment_name_1():
"""
First tries with ModelNet40
First we compare convergence of a very very deep network on ModelNet40, with our without bn
Then, We try the resuming of previous trainings. Which works quite well.
However in the mean time, we change how validation worked by calling net.eval()/net.train() before/after
validation. It seems that the network perform strange when calling net.eval()/net.train() although it should be the
right way to do it.
Then we try to change BatchNorm1D with InstanceNorm1D and compare with and without calling eval/train at validation.
(Also with a faster lr decay).
--- MISTAKE FOUND --- the batch norm momentum was inverted 0.98 instead of 0.02.
See next experiment for correct convergences. Instance norm seems not as good
"""
# Using the dates of the logs, you can easily gather consecutive ones. All logs should be of the same dataset.
start = 'Log_2020-03-18_16-04-20'
end = 'Log_2020-03-20_16-59-40'
if end < 'Log_2020-03-22_19-30-19':
res_path = 'old_results'
else:
res_path = 'results'
logs = np.sort([join(res_path, l) for l in listdir(res_path) if start <= l <= end])
# Give names to the logs (for legends)
logs_names = ['with_bn',
'without_bn',
'with_bn2',
'without_bn2',
'lrd_80_Inorm_eval_train',
'lrd_80_Inorm_always_train',
'test']
logs_names = np.array(logs_names[:len(logs)])
return logs, logs_names
def ModelNet40_batch_norm():
"""
Compare different type of batch norm now that it has been fixed. Batch norm seems the best easily. Instance norm
crewated a NAN loss so avoid this one.
Now try fast experiments. First reduce network size. Reducing the number of convolution per layer does not affect
results (maybe because dataset is too simple???). 5 small layers is way better that 4 big layers.
Now reduce number of step per epoch and maybe try balanced sampler. Balanced sampler with fewer steps per epoch is
way faster for convergence and gets nearly the same scores. so good for experimenting. However we cant really
conclude between parameters which will get the same score (like the more layers) because the dataset my be
limitating. We can only conclude if something is not good and reduce score.
"""
# Using the dates of the logs, you can easily gather consecutive ones. All logs should be of the same dataset.
start = 'Log_2020-03-20_16-59-41'
end = 'Log_2020-04-13_18-14-44'
if end < 'Log_2020-03-22_19-30-19':
res_path = 'old_results'
else:
res_path = 'results'
logs = np.sort([join(res_path, l) for l in listdir(res_path) if start <= l <= end])
# Give names to the logs (for legends)
logs_names = ['no_norm',
'IN',
'BN',
'5_small_layer-d0=0.02',
'3_big_layer-d0=0.02',
'3_big_layer-d0=0.04',
'small-e_n=300',
'small-e_n=300-balanced_train',
'small-e_n=300-balanced_traintest',
'test']
logs_names = np.array(logs_names[:len(logs)])
return logs, logs_names
def ModelNet40_fast_vs_results():
"""
Try lr decay with fast convergence (epoch_n=300 and balanced traintest). 80 is a good value.
"""
# Using the dates of the logs, you can easily gather consecutive ones. All logs should be of the same dataset.
start = 'Log_2020-03-21_16-09-17'
end = 'Log_2020-03-21_16-09-36'
if end < 'Log_2020-03-22_19-30-19':
res_path = 'old_results'
else:
res_path = 'results'
logs = np.sort([join(res_path, l) for l in listdir(res_path) if start <= l <= end])
logs = np.insert(logs, 1, join(res_path, 'Log_2020-03-21_11-57-45'))
# Give names to the logs (for legends)
logs_names = ['lrd=120',
'lrd=80',
'lrd=40',
'test']
logs_names = np.array(logs_names[:len(logs)])
return logs, logs_names
def ModelNet40_grad_clipping():
"""
Test different grad clipping. No difference so we can move on
"""
# Using the dates of the logs, you can easily gather consecutive ones. All logs should be of the same dataset.
start = 'Log_2020-03-21_18-21-37'
end = 'Log_2020-03-21_18-30-01'
if end < 'Log_2020-03-22_19-30-19':
res_path = 'old_results'
else:
res_path = 'results'
logs = np.sort([join(res_path, l) for l in listdir(res_path) if start <= l <= end])
logs = np.insert(logs, 0, join(res_path, 'Log_2020-03-21_11-57-45'))
# Give names to the logs (for legends)
logs_names = ['value_clip_100',
'norm_clip_100',
'value_clip_10',
'norm_clip_10',
'no_clip',
'test']
logs_names = np.array(logs_names[:len(logs)])
return logs, logs_names
def ModelNet40_KP_extent():
"""
Test differents mode et kp extent. sum et extent=2.0 definitivement moins bon (trop de recouvrement des kp
influences, noyau moins versatile). les closest semble plutot bon et le sum extent=1.5 pas mal du tout () peut
etre le meilleur. A confirmer sur gros dataset
"""
# Using the dates of the logs, you can easily gather consecutive ones. All logs should be of the same dataset.
start = 'Log_2020-03-21_18-30-02'
end = 'Log_2020-03-21_23-36-18'
if end < 'Log_2020-03-22_19-30-19':
res_path = 'old_results'
else:
res_path = 'results'
logs = np.sort([join(res_path, l) for l in listdir(res_path) if start <= l <= end])
logs = np.insert(logs, 0, join(res_path, 'Log_2020-03-21_11-57-45'))
# Give names to the logs (for legends)
logs_names = ['KPe=1.0_sum_linear',
'KPe=1.5_sum_linear',
'KPe=2.0_sum_linear',
'KPe=1.5_closest_linear',
'KPe=2.0_closest_linear',
'test']
logs_names = np.array(logs_names[:len(logs)])
return logs, logs_names
def ModelNet40_gaussian():
"""
Test different extent in gaussian mode. extent=1.5 seems the best. 2.0 is not bad. But in any case, it does not
perform better than 1.5-linear-sum at least on this dataset.
"""
# Using the dates of the logs, you can easily gather consecutive ones. All logs should be of the same dataset.
start = 'Log_2020-03-21_23-36-19'
end = 'Log_2020-04-13_18-14-44'
if end < 'Log_2020-03-22_19-30-19':
res_path = 'old_results'
else:
res_path = 'results'
logs = np.sort([join(res_path, l) for l in listdir(res_path) if start <= l <= end])
logs = np.insert(logs, 4, join(res_path, 'Log_2020-03-21_19-35-11'))
# Give names to the logs (for legends)
logs_names = ['KPe=1.0_sum_gaussian',
'KPe=1.5_sum_gaussian',
'KPe=2.0_sum_gaussian',
'KPe=2.5_sum_gaussian',
'KPe=1.5_sum_linear',
'test']
logs_names = np.array(logs_names[:len(logs)])
return logs, logs_names
def ModelNet40_normals():
"""
Test different way to add normals. Seems pretty much the same and we dont care about normals.
"""
# Using the dates of the logs, you can easily gather consecutive ones. All logs should be of the same dataset.
start = 'Log_2020-03-22_10-18-56'
end = 'Log_2020-03-22_13-32-51'
if end < 'Log_2020-03-22_19-30-19':
res_path = 'old_results'
else:
res_path = 'results'
logs = np.sort([join(res_path, l) for l in listdir(res_path) if start <= l <= end])
logs = np.insert(logs, 0, join(res_path, 'Log_2020-03-21_19-35-11'))
# Give names to the logs (for legends)
logs_names = ['no_normals',
'anisotropic_scale_normals',
'wrong_scale_normals',
'only_symmetries_normals(cheating)',
'test']
logs_names = np.array(logs_names[:len(logs)])
return logs, logs_names
def ModelNet40_radius():
"""
Test different convolution radius. It was expected that larger radius would means slower networks but better
performances. In fact we do not see much difference (again because of the dataset maybe?)
"""
# Using the dates of the logs, you can easily gather consecutive ones. All logs should be of the same dataset.
start = 'Log_2020-03-22_13-32-52'
end = 'Log_2020-03-22_19-30-17'
if end < 'Log_2020-03-22_19-30-19':
res_path = 'old_results'
else:
res_path = 'results'
logs = np.sort([join(res_path, l) for l in listdir(res_path) if start <= l <= end])
logs = np.insert(logs, 2, join(res_path, 'Log_2020-03-21_19-35-11'))
# Give names to the logs (for legends)
logs_names = ['KPe=0.9_r=1.5',
'KPe=1.2_r=2.0',
'KPe=1.5_r=2.5',
'KPe=1.8_r=3.0',
'KPe=2.1_r=3.5',
'test']
logs_names = np.array(logs_names[:len(logs)])
return logs, logs_names
def ModelNet40_deform(old_result_limit):
"""
Test deformable convolution with different offset decay. Without modulations 0.01 seems the best. With
modulations 0.1 seems the best. In all cases 1.0 is to much. We need to show deformations for verification.
It seems that deformations are not really fittig the point cloud. They just reach further away. W need to try on
other datasets and with deformations earlier to see if fitting loss works
"""
# Using the dates of the logs, you can easily gather consecutive ones. All logs should be of the same dataset.
start = 'Log_2020-03-22_19-30-21'
end = 'Log_2020-03-25_19-30-17'
if end < old_result_limit:
res_path = 'old_results'
else:
res_path = 'results'
logs = np.sort([join(res_path, l) for l in listdir(res_path) if start <= l <= end])
logs = logs.astype('<U50')
logs = np.insert(logs, 0, join('old_results', 'Log_2020-03-21_19-35-11'))
# Give names to the logs (for legends)
logs_names = ['normal',
'offset_d=0.01',
'offset_d=0.1',
'offset_d=1.0',
'offset_d=0.001',
'offset_d=0.001_modu',
'offset_d=0.01_modu',
'offset_d=0.1_modu',
'offset_d=1.0_modu',
'test']
logs_names = np.array(logs_names[:len(logs)])
return logs, logs_names
def S3DIS_first(old_result_limit):
"""
Test first S3DIS. First two test have all symetries (even vertical), which is not good). We corecct for
the following.
Then we try some experiments with different input scalea and the results are not as high as expected.
WHY?
FOUND IT! Problem resnet bottleneck should divide out-dim by 4 and not by 2
"""
# Using the dates of the logs, you can easily gather consecutive ones. All logs should be of the same dataset.
start = 'Log_2020-03-25_19-30-17'
end = 'Log_2020-04-03_11-12-05'
if end < old_result_limit:
res_path = 'old_results'
else:
res_path = 'results'
logs = np.sort([join(res_path, l) for l in listdir(res_path) if start <= l <= end])
logs = logs.astype('<U50')
# Give names to the logs (for legends)
logs_names = ['Fin=1_R=1.2_r=0.02 (error all symetries)',
'Fin=1_R=2.5_r=0.04 (error all symetries)',
'Fin=5_R=1.2_r=0.02',
'Fin=5_R=1.8_r=0.03',
'Fin=5_R=2.5_r=0.04',
'original_normal',
'original_deform',
'original_random_sampler',
'original_potentials_batch16',
'test']
logs_names = np.array(logs_names[:len(logs)])
return logs, logs_names
def S3DIS_go(old_result_limit):
"""
Test S3DIS.
"""
# Using the dates of the logs, you can easily gather consecutive ones. All logs should be of the same dataset.
start = 'Log_2020-04-03_11-12-07'
end = 'Log_2020-04-07_15-30-17'
if end < old_result_limit:
res_path = 'old_results'
else:
res_path = 'results'
logs = np.sort([join(res_path, l) for l in listdir(res_path) if start <= l <= end])
logs = logs.astype('<U50')
# Give names to the logs (for legends)
logs_names = ['R=2.0_r=0.04_Din=128_potential',
'R=2.0_r=0.04_Din=64_potential',
'R=1.8_r=0.03',
'R=1.8_r=0.03_deeper',
'R=1.8_r=0.03_deform',
'R=2.0_r=0.03_megadeep',
'R=2.5_r=0.03_megadeep',
'test']
logs_names = np.array(logs_names[:len(logs)])
return logs, logs_names
def SemanticKittiFirst(old_result_limit):
"""
Test SematicKitti. First exps.
Try some class weight strategies. It seems that the final score is not impacted so much. With weights, some classes
are better while other are worse, for a final score that remains the same.
"""
# Using the dates of the logs, you can easily gather consecutive ones. All logs should be of the same dataset.
start = 'Log_2020-04-07_15-30-17'
end = 'Log_2020-04-11_21-34-16'
if end < old_result_limit:
res_path = 'old_results'
else:
res_path = 'results'
logs = np.sort([join(res_path, l) for l in listdir(res_path) if start <= l <= end])
logs = logs.astype('<U50')
# Give names to the logs (for legends)
logs_names = ['R=5.0_dl=0.04',
'R=5.0_dl=0.08',
'R=10.0_dl=0.08',
'R=10.0_dl=0.08_20*weigths',
'R=10.0_dl=0.08_20*sqrt_weigths',
'R=10.0_dl=0.08_100*sqrt_w',
'R=10.0_dl=0.08_100*sqrt_w_capped',
'R=10.0_dl=0.08_no_w']
logs_names = np.array(logs_names[:len(logs)])
return logs, logs_names
def SemanticKitti_scale(old_result_limit):
"""
Test SematicKitti. Try different scales of input raduis / subsampling.
"""
# Using the dates of the logs, you can easily gather consecutive ones. All logs should be of the same dataset.
start = 'Log_2020-04-11_21-34-15'
end = 'Log_2020-04-20_11-52-58'
if end < old_result_limit:
res_path = 'old_results'
else:
res_path = 'results'
logs = np.sort([join(res_path, l) for l in listdir(res_path) if start <= l <= end])
logs = logs.astype('<U50')
# Give names to the logs (for legends)
logs_names = ['R=10.0_dl=0.08',
'R=4.0_dl=0.04',
'R=6.0_dl=0.06',
'R=6.0_dl=0.06_inF=2',
'test',
'test',
'test',
'test',
'test']
logs_names = np.array(logs_names[:len(logs)])
return logs, logs_names
def S3DIS_deform(old_result_limit):
"""
Debug S3DIS deformable.
At checkpoint 50, the points seem to start fitting the shape, but then, they just get further away from each other
and do not care about input points. The fitting loss seems broken?
10* fitting loss seems pretty good fitting the point cloud. It seems that the offset decay was a bit to low,
because the same happens without the 0.1 hook. So we can try to keep a 0.5 hook and multiply offset decay by 2.
In this function you choose the results you want to plot together, to compare them as an experiment.
Just return the list of log paths (like 'results/Log_2020-04-04_10-04-42' for example), and the associated names
of these logs.
Below an example of how to automatically gather all logs between two dates, and name them.
"""
# Using the dates of the logs, you can easily gather consecutive ones. All logs should be of the same dataset.
start = 'Log_2020-04-22_11-52-58'
end = 'Log_2020-05-22_11-52-58'
if end < old_result_limit:
res_path = 'old_results'
else:
res_path = 'results'
# Name of the result path
res_path = 'results'
# Gather logs and sort by date
logs = np.sort([join(res_path, l) for l in listdir(res_path) if start <= l <= end])
logs = logs.astype('<U50')
logs = np.insert(logs, 0, 'results/Log_2020-04-04_10-04-42')
# Give names to the logs (for legends)
logs_names = ['off_d=0.01_baseline',
'off_d=0.01',
'off_d=0.05',
'off_d=0.05_corrected',
'off_d=0.05_norepulsive',
'off_d=0.05_repulsive0.5',
'off_d=0.05_10*fitting',
'off_d=0.05_no_hook0.1',
'NEWPARAMS_fit=0.05_loss=0.5_(=off_d=0.1_hook0.5)',
'same_normal'
'test']
# Give names to the logs (for plot legends)
logs_names = ['name_log_1',
'name_log_2',
'name_log_3']
# safe check log names
logs_names = np.array(logs_names[:len(logs)])
return logs, logs_names
def experiment_name_2():
"""
In this function you choose the results you want to plot together, to compare them as an experiment.
Just return the list of log paths (like 'results/Log_2020-04-04_10-04-42' for example), and the associated names
of these logs.
Below an example of how to automatically gather all logs between two dates, and name them.
"""
# Using the dates of the logs, you can easily gather consecutive ones. All logs should be of the same dataset.
start = 'Log_2020-04-22_11-52-58'
end = 'Log_2020-05-22_11-52-58'
# Name of the result path
res_path = 'results'
# Gather logs and sort by date
logs = np.sort([join(res_path, l) for l in listdir(res_path) if start <= l <= end])
# Optionally add a specific log at a specific place in the log list
logs = logs.astype('<U50')
logs = np.insert(logs, 0, 'results/Log_2020-04-04_10-04-42')
# Give names to the logs (for plot legends)
logs_names = ['name_log_inserted',
'name_log_1',
'name_log_2',
'name_log_3']
# safe check log names
logs_names = np.array(logs_names[:len(logs)])
return logs, logs_names
# ----------------------------------------------------------------------------------------------------------------------
#
# Main Call
# \***************/
#
if __name__ == '__main__':
@ -1561,19 +763,12 @@ if __name__ == '__main__':
# Choose a list of log to plot together for comparison
######################################################
# TODO: test deformable on S3DIS to see of fitting loss works
# TODO: try class weights on S3DIS (very low weight for beam)
# Old result limit
old_res_lim = 'Log_2020-03-25_19-30-17'
# My logs: choose the logs to show
logs, logs_names = S3DIS_deform(old_res_lim)
#os.environ['QT_DEBUG_PLUGINS'] = '1'
logs, logs_names = experiment_name_1()
######################################################
# Choose a list of log to plot together for comparison
######################################################
################
# Plot functions
################
# Check that all logs are of the same dataset. Different object can be compared
plot_dataset = None

View file

@ -97,8 +97,8 @@ if __name__ == '__main__':
chosen_log = 'results/Log_2020-04-05_19-19-20' # => ModelNet40
# You can also choose the index of the snapshot to load (last by default)
chkp_idx = -1
# Choose the index of the checkpoint to load OR None if you want to load the current checkpoint
chkp_idx = None
# Choose to test on validation or test split
on_val = True
@ -111,7 +111,7 @@ if __name__ == '__main__':
############################
# Set which gpu is going to be used
GPU_ID = '1'
GPU_ID = '0'
# Set GPU visible device
os.environ['CUDA_VISIBLE_DEVICES'] = GPU_ID
@ -215,12 +215,4 @@ if __name__ == '__main__':
elif config.dataset_task == 'slam_segmentation':
tester.slam_segmentation_test(net, test_loader, config)
else:
raise ValueError('Unsupported dataset_task for testing: ' + config.dataset_task)
# TODO: For test and also for training. When changing epoch do not restart the worker initiation. Keep workers
# active with a while loop instead of using for loops.
# For training and validation, keep two sets of worker active in parallel? is it possible?
# TODO: We have to verify if training on smaller spheres and testing on whole frame changes the score because
# batchnorm may not have the same result as distribution of points will be different.
raise ValueError('Unsupported dataset_task for testing: ' + config.dataset_task)

View file

@ -70,14 +70,19 @@ class Modelnet40Config(Config):
# Define layers
architecture = ['simple',
'resnetb_strided',
'resnetb',
'resnetb_strided',
'resnetb',
'resnetb',
'resnetb_strided',
'resnetb_deformable',
'resnetb_deformable_strided',
'resnetb_deformable',
'resnetb',
'resnetb',
'resnetb_strided',
'resnetb',
'resnetb',
'resnetb_strided',
'resnetb',
'resnetb',
'global_average']
###################
@ -97,7 +102,7 @@ class Modelnet40Config(Config):
deform_radius = 6.0
# Radius of the area of influence of each kernel point in "number grid cell". (1.0 is the standard value)
KP_extent = 1.5
KP_extent = 1.2
# Behavior of convolutions in ('constant', 'linear', 'gaussian')
KP_influence = 'linear'
@ -115,11 +120,13 @@ class Modelnet40Config(Config):
use_batch_norm = True
batch_norm_momentum = 0.05
# Offset loss
# 'permissive' only constrains offsets inside the deform radius
# 'fitting' helps deformed kernels to adapt to the geometry by penalizing distance to input points
offsets_loss = 'fitting'
offsets_decay = 0.1
# Deformable offset loss
# 'point2point' fitting geometry by penalizing distance from deform point to input points
# 'point2plane' fitting geometry by penalizing distance from deform point to input point triplet (not implemented)
deform_fitting_mode = 'point2point'
deform_fitting_power = 0.1 # Multiplier for the fitting/repulsive loss
deform_loss_power = 0.1 # Multiplier for output loss applied to the deformations
repulse_extent = 0.8 # Distance of repulsion for deformed kernel points
#####################
# Training parameters
@ -131,11 +138,11 @@ class Modelnet40Config(Config):
# Learning rate management
learning_rate = 1e-2
momentum = 0.98
lr_decays = {i: 0.1**(1/80) for i in range(1, max_epoch)}
lr_decays = {i: 0.1**(1/100) for i in range(1, max_epoch)}
grad_clip_norm = 100.0
# Number of batch
batch_num = 16
batch_num = 10
# Number of steps per epochs
epoch_steps = 300
@ -179,7 +186,7 @@ if __name__ == '__main__':
############################
# Set which gpu is going to be used
GPU_ID = '3'
GPU_ID = '0'
# Set GPU visible device
os.environ['CUDA_VISIBLE_DEVICES'] = GPU_ID

View file

@ -59,7 +59,7 @@ class S3DISConfig(Config):
dataset_task = ''
# Number of CPU threads for the input pipeline
input_threads = 20
input_threads = 10
#########################
# Architecture definition
@ -72,14 +72,14 @@ class S3DISConfig(Config):
'resnetb',
'resnetb',
'resnetb_strided',
'resnetb',
'resnetb',
'resnetb_strided',
'resnetb',
'resnetb',
'resnetb_strided',
'resnetb',
'resnetb',
'resnetb_deformable',
'resnetb_deformable',
'resnetb_deformable_strided',
'resnetb_deformable',
'resnetb_deformable',
'resnetb_deformable_strided',
'resnetb_deformable',
'resnetb_deformable',
'nearest_upsample',
'unary',
'nearest_upsample',
@ -109,7 +109,7 @@ class S3DISConfig(Config):
deform_radius = 6.0
# Radius of the area of influence of each kernel point in "number grid cell". (1.0 is the standard value)
KP_extent = 1.5
KP_extent = 1.2
# Behavior of convolutions in ('constant', 'linear', 'gaussian')
KP_influence = 'linear'
@ -128,12 +128,13 @@ class S3DISConfig(Config):
use_batch_norm = True
batch_norm_momentum = 0.02
# Offset loss
# Deformable offset loss
# 'point2point' fitting geometry by penalizing distance from deform point to input points
# 'point2plane' fitting geometry by penalizing distance from deform point to input point triplet
# 'point2plane' fitting geometry by penalizing distance from deform point to input point triplet (not implemented)
deform_fitting_mode = 'point2point'
deform_fitting_power = 0.05
deform_loss_power = 0.5
deform_fitting_power = 0.1 # Multiplier for the fitting/repulsive loss
deform_loss_power = 0.1 # Multiplier for output loss applied to the deformations
repulse_extent = 0.8 # Distance of repulsion for deformed kernel points
#####################
# Training parameters
@ -193,7 +194,7 @@ if __name__ == '__main__':
############################
# Set which gpu is going to be used
GPU_ID = '2'
GPU_ID = '0'
# Set GPU visible device
os.environ['CUDA_VISIBLE_DEVICES'] = GPU_ID

View file

@ -123,7 +123,7 @@ class SemanticKittiConfig(Config):
deform_radius = 6.0
# Radius of the area of influence of each kernel point in "number grid cell". (1.0 is the standard value)
KP_extent = 1.5
KP_extent = 1.2
# Behavior of convolutions in ('constant', 'linear', 'gaussian')
KP_influence = 'linear'
@ -142,11 +142,13 @@ class SemanticKittiConfig(Config):
use_batch_norm = True
batch_norm_momentum = 0.02
# Offset loss
# 'permissive' only constrains offsets inside the deform radius (NOT implemented yet)
# 'fitting' helps deformed kernels to adapt to the geometry by penalizing distance to input points
offsets_loss = 'fitting'
offsets_decay = 0.01
# Deformable offset loss
# 'point2point' fitting geometry by penalizing distance from deform point to input points
# 'point2plane' fitting geometry by penalizing distance from deform point to input point triplet (not implemented)
deform_fitting_mode = 'point2point'
deform_fitting_power = 0.1 # Multiplier for the fitting/repulsive loss
deform_loss_power = 0.1 # Multiplier for output loss applied to the deformations
repulse_extent = 0.8 # Distance of repulsion for deformed kernel points
#####################
# Training parameters
@ -193,7 +195,6 @@ class SemanticKittiConfig(Config):
# class_w = [1.430, 5.000, 5.000, 4.226, 5.000, 5.000, 5.000, 5.000, 0.719, 2.377,
# 0.886, 3.863, 0.869, 1.209, 0.594, 3.780, 1.129, 5.000, 5.000]
# Do we nee to save convergence
saving = True
saving_path = None
@ -212,7 +213,7 @@ if __name__ == '__main__':
############################
# Set which gpu is going to be used
GPU_ID = '2'
GPU_ID = '0'
# Set GPU visible device
os.environ['CUDA_VISIBLE_DEVICES'] = GPU_ID

View file

@ -159,10 +159,13 @@ class Config:
# Choose weights for class (used in segmentation loss). Empty list for no weights
class_w = []
# New offset regularization parameters
# Deformable offset loss
# 'point2point' fitting geometry by penalizing distance from deform point to input points
# 'point2plane' fitting geometry by penalizing distance from deform point to input point triplet (not implemented)
deform_fitting_mode = 'point2point'
deform_fitting_power = 0.05
deform_loss_power = 0.5
deform_fitting_power = 0.1 # Multiplier for the fitting/repulsive loss
deform_loss_power = 0.1 # Multiplier for output loss applied to the deformations
repulse_extent = 1.0 # Distance of repulsion for deformed kernel points
# Number of batch
batch_num = 10
@ -293,7 +296,7 @@ class Config:
text_file.write('num_classes = {:d}\n'.format(self.num_classes))
text_file.write('in_points_dim = {:d}\n'.format(self.in_points_dim))
text_file.write('in_features_dim = {:d}\n'.format(self.in_features_dim))
text_file.write('in_radius = {:.3f}\n'.format(self.in_radius))
text_file.write('in_radius = {:.6f}\n'.format(self.in_radius))
text_file.write('input_threads = {:d}\n\n'.format(self.input_threads))
# Model parameters
@ -309,26 +312,26 @@ class Config:
text_file.write('num_layers = {:d}\n'.format(self.num_layers))
text_file.write('first_features_dim = {:d}\n'.format(self.first_features_dim))
text_file.write('use_batch_norm = {:d}\n'.format(int(self.use_batch_norm)))
text_file.write('batch_norm_momentum = {:.3f}\n\n'.format(self.batch_norm_momentum))
text_file.write('segmentation_ratio = {:.3f}\n\n'.format(self.segmentation_ratio))
text_file.write('batch_norm_momentum = {:.6f}\n\n'.format(self.batch_norm_momentum))
text_file.write('segmentation_ratio = {:.6f}\n\n'.format(self.segmentation_ratio))
# KPConv parameters
text_file.write('# KPConv parameters\n')
text_file.write('# *****************\n\n')
text_file.write('first_subsampling_dl = {:.3f}\n'.format(self.first_subsampling_dl))
text_file.write('first_subsampling_dl = {:.6f}\n'.format(self.first_subsampling_dl))
text_file.write('num_kernel_points = {:d}\n'.format(self.num_kernel_points))
text_file.write('conv_radius = {:.3f}\n'.format(self.conv_radius))
text_file.write('deform_radius = {:.3f}\n'.format(self.deform_radius))
text_file.write('conv_radius = {:.6f}\n'.format(self.conv_radius))
text_file.write('deform_radius = {:.6f}\n'.format(self.deform_radius))
text_file.write('fixed_kernel_points = {:s}\n'.format(self.fixed_kernel_points))
text_file.write('KP_extent = {:.3f}\n'.format(self.KP_extent))
text_file.write('KP_extent = {:.6f}\n'.format(self.KP_extent))
text_file.write('KP_influence = {:s}\n'.format(self.KP_influence))
text_file.write('aggregation_mode = {:s}\n'.format(self.aggregation_mode))
text_file.write('modulated = {:d}\n'.format(int(self.modulated)))
text_file.write('n_frames = {:d}\n'.format(self.n_frames))
text_file.write('max_in_points = {:d}\n\n'.format(self.max_in_points))
text_file.write('max_val_points = {:d}\n\n'.format(self.max_val_points))
text_file.write('val_radius = {:.3f}\n\n'.format(self.val_radius))
text_file.write('val_radius = {:.6f}\n\n'.format(self.val_radius))
# Training parameters
text_file.write('# Training parameters\n')
@ -350,22 +353,23 @@ class Config:
text_file.write('augment_rotation = {:s}\n'.format(self.augment_rotation))
text_file.write('augment_noise = {:f}\n'.format(self.augment_noise))
text_file.write('augment_occlusion = {:s}\n'.format(self.augment_occlusion))
text_file.write('augment_occlusion_ratio = {:.3f}\n'.format(self.augment_occlusion_ratio))
text_file.write('augment_occlusion_ratio = {:.6f}\n'.format(self.augment_occlusion_ratio))
text_file.write('augment_occlusion_num = {:d}\n'.format(self.augment_occlusion_num))
text_file.write('augment_scale_anisotropic = {:d}\n'.format(int(self.augment_scale_anisotropic)))
text_file.write('augment_scale_min = {:.3f}\n'.format(self.augment_scale_min))
text_file.write('augment_scale_max = {:.3f}\n'.format(self.augment_scale_max))
text_file.write('augment_color = {:.3f}\n\n'.format(self.augment_color))
text_file.write('augment_scale_min = {:.6f}\n'.format(self.augment_scale_min))
text_file.write('augment_scale_max = {:.6f}\n'.format(self.augment_scale_max))
text_file.write('augment_color = {:.6f}\n\n'.format(self.augment_color))
text_file.write('weight_decay = {:f}\n'.format(self.weight_decay))
text_file.write('segloss_balance = {:s}\n'.format(self.segloss_balance))
text_file.write('class_w =')
for a in self.class_w:
text_file.write(' {:.3f}'.format(a))
text_file.write(' {:.6f}'.format(a))
text_file.write('\n')
text_file.write('deform_fitting_mode = {:s}\n'.format(self.deform_fitting_mode))
text_file.write('deform_fitting_power = {:f}\n'.format(self.deform_fitting_power))
text_file.write('deform_loss_power = {:f}\n'.format(self.deform_loss_power))
text_file.write('deform_fitting_power = {:.6f}\n'.format(self.deform_fitting_power))
text_file.write('deform_loss_power = {:.6f}\n'.format(self.deform_loss_power))
text_file.write('repulse_extent = {:.6f}\n'.format(self.repulse_extent))
text_file.write('batch_num = {:d}\n'.format(self.batch_num))
text_file.write('val_batch_num = {:d}\n'.format(self.val_batch_num))
text_file.write('max_epoch = {:d}\n'.format(self.max_epoch))

View file

@ -894,208 +894,6 @@ class ModelTrainer:
# Saving methods
# ------------------------------------------------------------------------------------------------------------------
def save_kernel_points(self, model, epoch):
"""
Method saving kernel point disposition and current model weights for later visualization
"""
if model.config.saving:
# Create a directory to save kernels of this epoch
kernels_dir = join(model.saving_path, 'kernel_points', 'epoch{:d}'.format(epoch))
if not exists(kernels_dir):
makedirs(kernels_dir)
# Get points
all_kernel_points_tf = [v for v in tf.global_variables() if 'kernel_points' in v.name
and v.name.startswith('KernelPoint')]
all_kernel_points = self.sess.run(all_kernel_points_tf)
# Get Extents
if False and 'gaussian' in model.config.convolution_mode:
all_kernel_params_tf = [v for v in tf.global_variables() if 'kernel_extents' in v.name
and v.name.startswith('KernelPoint')]
all_kernel_params = self.sess.run(all_kernel_params_tf)
else:
all_kernel_params = [None for p in all_kernel_points]
# Save in ply file
for kernel_points, kernel_extents, v in zip(all_kernel_points, all_kernel_params, all_kernel_points_tf):
# Name of saving file
ply_name = '_'.join(v.name[:-2].split('/')[1:-1]) + '.ply'
ply_file = join(kernels_dir, ply_name)
# Data to save
if kernel_points.ndim > 2:
kernel_points = kernel_points[:, 0, :]
if False and 'gaussian' in model.config.convolution_mode:
data = [kernel_points, kernel_extents]
keys = ['x', 'y', 'z', 'sigma']
else:
data = kernel_points
keys = ['x', 'y', 'z']
# Save
write_ply(ply_file, data, keys)
# Get Weights
all_kernel_weights_tf = [v for v in tf.global_variables() if 'weights' in v.name
and v.name.startswith('KernelPointNetwork')]
all_kernel_weights = self.sess.run(all_kernel_weights_tf)
# Save in numpy file
for kernel_weights, v in zip(all_kernel_weights, all_kernel_weights_tf):
np_name = '_'.join(v.name[:-2].split('/')[1:-1]) + '.npy'
np_file = join(kernels_dir, np_name)
np.save(np_file, kernel_weights)
# Debug methods
# ------------------------------------------------------------------------------------------------------------------
def show_memory_usage(self, batch_to_feed):
for l in range(self.config.num_layers):
neighb_size = list(batch_to_feed[self.in_neighbors_f32[l]].shape)
dist_size = neighb_size + [self.config.num_kernel_points, 3]
dist_memory = np.prod(dist_size) * 4 * 1e-9
in_feature_size = neighb_size + [self.config.first_features_dim * 2**l]
in_feature_memory = np.prod(in_feature_size) * 4 * 1e-9
out_feature_size = [neighb_size[0], self.config.num_kernel_points, self.config.first_features_dim * 2**(l+1)]
out_feature_memory = np.prod(out_feature_size) * 4 * 1e-9
print('Layer {:d} => {:.1f}GB {:.1f}GB {:.1f}GB'.format(l,
dist_memory,
in_feature_memory,
out_feature_memory))
print('************************************')
def debug_nan(self, model, inputs, logits):
"""
NaN happened, find where
"""
print('\n\n------------------------ NaN DEBUG ------------------------\n')
# First save everything to reproduce error
file1 = join(model.saving_path, 'all_debug_inputs.pkl')
with open(file1, 'wb') as f1:
pickle.dump(inputs, f1)
# First save all inputs
file1 = join(model.saving_path, 'all_debug_logits.pkl')
with open(file1, 'wb') as f1:
pickle.dump(logits, f1)
# Then print a list of the trainable variables and if they have nan
print('List of variables :')
print('*******************\n')
all_vars = self.sess.run(tf.global_variables())
for v, value in zip(tf.global_variables(), all_vars):
nan_percentage = 100 * np.sum(np.isnan(value)) / np.prod(value.shape)
print(v.name, ' => {:.1f}% of values are NaN'.format(nan_percentage))
print('Inputs :')
print('********')
#Print inputs
nl = model.config.num_layers
for layer in range(nl):
print('Layer : {:d}'.format(layer))
points = inputs[layer]
neighbors = inputs[nl + layer]
pools = inputs[2*nl + layer]
upsamples = inputs[3*nl + layer]
nan_percentage = 100 * np.sum(np.isnan(points)) / np.prod(points.shape)
print('Points =>', points.shape, '{:.1f}% NaN'.format(nan_percentage))
nan_percentage = 100 * np.sum(np.isnan(neighbors)) / np.prod(neighbors.shape)
print('neighbors =>', neighbors.shape, '{:.1f}% NaN'.format(nan_percentage))
nan_percentage = 100 * np.sum(np.isnan(pools)) / np.prod(pools.shape)
print('pools =>', pools.shape, '{:.1f}% NaN'.format(nan_percentage))
nan_percentage = 100 * np.sum(np.isnan(upsamples)) / np.prod(upsamples.shape)
print('upsamples =>', upsamples.shape, '{:.1f}% NaN'.format(nan_percentage))
ind = 4 * nl
features = inputs[ind]
nan_percentage = 100 * np.sum(np.isnan(features)) / np.prod(features.shape)
print('features =>', features.shape, '{:.1f}% NaN'.format(nan_percentage))
ind += 1
batch_weights = inputs[ind]
ind += 1
in_batches = inputs[ind]
max_b = np.max(in_batches)
print(in_batches.shape)
in_b_sizes = np.sum(in_batches < max_b - 0.5, axis=-1)
print('in_batch_sizes =>', in_b_sizes)
ind += 1
out_batches = inputs[ind]
max_b = np.max(out_batches)
print(out_batches.shape)
out_b_sizes = np.sum(out_batches < max_b - 0.5, axis=-1)
print('out_batch_sizes =>', out_b_sizes)
ind += 1
point_labels = inputs[ind]
print('point labels, ', point_labels.shape, ', values : ', np.unique(point_labels))
print(np.array([int(100 * np.sum(point_labels == l) / len(point_labels)) for l in np.unique(point_labels)]))
ind += 1
if model.config.dataset.startswith('ShapeNetPart_multi'):
object_labels = inputs[ind]
nan_percentage = 100 * np.sum(np.isnan(object_labels)) / np.prod(object_labels.shape)
print('object_labels =>', object_labels.shape, '{:.1f}% NaN'.format(nan_percentage))
ind += 1
augment_scales = inputs[ind]
ind += 1
augment_rotations = inputs[ind]
ind += 1
print('\npoolings and upsamples nums :\n')
#Print inputs
for layer in range(nl):
print('\nLayer : {:d}'.format(layer))
neighbors = inputs[nl + layer]
pools = inputs[2*nl + layer]
upsamples = inputs[3*nl + layer]
max_n = np.max(neighbors)
nums = np.sum(neighbors < max_n - 0.5, axis=-1)
print('min neighbors =>', np.min(nums))
if np.prod(pools.shape) > 0:
max_n = np.max(pools)
nums = np.sum(pools < max_n - 0.5, axis=-1)
print('min pools =>', np.min(nums))
else:
print('pools empty')
if np.prod(upsamples.shape) > 0:
max_n = np.max(upsamples)
nums = np.sum(upsamples < max_n - 0.5, axis=-1)
print('min upsamples =>', np.min(nums))
else:
print('upsamples empty')
print('\nFinished\n\n')
time.sleep(0.5)

File diff suppressed because it is too large Load diff

View file

@ -92,21 +92,14 @@ if __name__ == '__main__':
# Here you can choose which model you want to test with the variable test_model. Here are the possible values :
#
# > 'last_XXX': Automatically retrieve the last trained model on dataset XXX
# > '(old_)results/Log_YYYY-MM-DD_HH-MM-SS': Directly provide the path of a trained model
# > 'results/Log_YYYY-MM-DD_HH-MM-SS': Directly provide the path of a trained model
# chosen_log = 'results/Log_2020-04-04_10-04-42' # => ModelNet40
# chosen_log = 'results/Log_2020-04-22_11-53-45' # => S3DIS
# chosen_log = 'results/Log_2020-04-22_12-28-37' # => S3DIS corrected
# chosen_log = 'results/Log_2020-04-23_09-48-15' # => S3DIS no repulsive
# chosen_log = 'results/Log_2020-04-23_09-49-49' # => S3DIS repulsive 0.5
# chosen_log = 'results/Log_2020-04-23_19-41-12' # => S3DIS 10*fitting
chosen_log = 'results/Log_2020-04-23_19-42-18' # => S3DIS no hook
chosen_log = 'results/Log_2020-04-23_19-42-18'
# Choose the index of the checkpoint to load OR None if you want to load the current checkpoint
chkp_idx = None
# You can also choose the index of the snapshot to load (last by default)
chkp_idx = -1
# Eventually you can choose which feature is visualized (index of the deform operation in the network)
# Eventually you can choose which feature is visualized (index of the deform convolution in the network)
deform_idx = 0
# Deal with 'last_XXX' choices
@ -148,7 +141,6 @@ if __name__ == '__main__':
# Change parameters for the test here. For example, you can stop augmenting the input data.
config.augment_noise = 0.0001
#config.augment_symmetries = False
config.batch_num = 1
config.in_radius = 2.0
config.input_threads = 0