From f4da047017c6e2c0a6125ce4ae45c048a70a0eb2 Mon Sep 17 00:00:00 2001 From: HuguesTHOMAS Date: Fri, 24 Apr 2020 12:19:12 -0400 Subject: [PATCH] Corrections --- datasets/NCLT.py | 502 ---------------------------------------------- train_NCLT.py | 344 ------------------------------- train_S3DIS.py | 4 +- visualize_ERFs.py | 205 ------------------- 4 files changed, 1 insertion(+), 1054 deletions(-) delete mode 100644 datasets/NCLT.py delete mode 100644 train_NCLT.py delete mode 100644 visualize_ERFs.py diff --git a/datasets/NCLT.py b/datasets/NCLT.py deleted file mode 100644 index f262f51..0000000 --- a/datasets/NCLT.py +++ /dev/null @@ -1,502 +0,0 @@ -# -# -# 0=================================0 -# | Kernel Point Convolutions | -# 0=================================0 -# -# -# ---------------------------------------------------------------------------------------------------------------------- -# -# Class handling SemanticKitti dataset. -# Implements a Dataset, a Sampler, and a collate_fn -# -# ---------------------------------------------------------------------------------------------------------------------- -# -# Hugues THOMAS - 11/06/2018 -# - - -# ---------------------------------------------------------------------------------------------------------------------- -# -# Imports and global variables -# \**********************************/ -# - -# Common libs -import sys -import struct -import scipy -import time -import numpy as np -import pickle -import torch -import yaml -#from mayavi import mlab -from multiprocessing import Lock - -import matplotlib.pyplot as plt -from mpl_toolkits.mplot3d import Axes3D - - -# OS functions -from os import listdir -from os.path import exists, join, isdir, getsize - -# Dataset parent class -from datasets.common import * -from torch.utils.data import Sampler, get_worker_info -from utils.mayavi_visu import * -from utils.metrics import fast_confusion - -from datasets.common import grid_subsampling -from utils.config import bcolors - - -def ssc_to_homo(ssc, ssc_in_radians=True): - - # Convert 6-DOF ssc coordinate transformation to 4x4 homogeneous matrix - # transformation - - if ssc.ndim == 1: - reduce = True - ssc = np.expand_dims(ssc, 0) - else: - reduce = False - - if not ssc_in_radians: - ssc[:, 3:] = np.pi / 180.0 * ssc[:, 3:] - - sr = np.sin(ssc[:, 3]) - cr = np.cos(ssc[:, 3]) - - sp = np.sin(ssc[:, 4]) - cp = np.cos(ssc[:, 4]) - - sh = np.sin(ssc[:, 5]) - ch = np.cos(ssc[:, 5]) - - H = np.zeros((ssc.shape[0], 4, 4)) - - H[:, 0, 0] = ch*cp - H[:, 0, 1] = -sh*cr + ch*sp*sr - H[:, 0, 2] = sh*sr + ch*sp*cr - H[:, 1, 0] = sh*cp - H[:, 1, 1] = ch*cr + sh*sp*sr - H[:, 1, 2] = -ch*sr + sh*sp*cr - H[:, 2, 0] = -sp - H[:, 2, 1] = cp*sr - H[:, 2, 2] = cp*cr - - H[:, 0, 3] = ssc[:, 0] - H[:, 1, 3] = ssc[:, 1] - H[:, 2, 3] = ssc[:, 2] - - H[:, 3, 3] = 1 - - if reduce: - H = np.squeeze(H) - - return H - - -def verify_magic(s): - - magic = 44444 - - m = struct.unpack('=4 and m[0] == magic and m[1] == magic and m[2] == magic and m[3] == magic - - -def test_read_hits(): - - data_path = '../../Data/NCLT' - velo_folder = 'velodyne_data' - day = '2012-01-08' - - hits_path = join(data_path, velo_folder, day, 'velodyne_hits.bin') - - all_utimes = [] - all_hits = [] - all_ints = [] - - num_bytes = getsize(hits_path) - current_bytes = 0 - - with open(hits_path, 'rb') as f_bin: - - total_hits = 0 - first_utime = -1 - last_utime = -1 - - while True: - - magic = f_bin.read(8) - if magic == b'': - break - - if not verify_magic(magic): - print('Could not verify magic') - - num_hits = struct.unpack(' 0.1: - break - - current_bytes += 24 + 8 * num_hits - - print('{:d}/{:d} => {:.1f}%'.format(current_bytes, num_bytes, 100 * current_bytes / num_bytes)) - - all_utimes = np.hstack(all_utimes) - all_hits = np.vstack(all_hits) - all_ints = np.hstack(all_ints) - - write_ply('test_hits', - [all_hits, all_ints, all_utimes], - ['x', 'y', 'z', 'intensity', 'utime']) - - print("Read %d total hits from %ld to %ld" % (total_hits, first_utime, last_utime)) - - return 0 - - -def frames_to_ply(show_frames=False): - - # In files - data_path = '../../Data/NCLT' - velo_folder = 'velodyne_data' - - days = np.sort([d for d in listdir(join(data_path, velo_folder))]) - - for day in days: - - # Out files - ply_folder = join(data_path, 'frames_ply', day) - if not exists(ply_folder): - makedirs(ply_folder) - - day_path = join(data_path, velo_folder, day, 'velodyne_sync') - f_names = np.sort([f for f in listdir(day_path) if f[-4:] == '.bin']) - - N = len(f_names) - print('Reading', N, 'files') - - for f_i, f_name in enumerate(f_names): - - ply_name = join(ply_folder, f_name[:-4] + '.ply') - if exists(ply_name): - continue - - - t1 = time.time() - - hits = [] - ints = [] - - with open(join(day_path, f_name), 'rb') as f_bin: - - while True: - x_str = f_bin.read(2) - - # End of file - if x_str == b'': - break - - x = struct.unpack(' np.min(day_gt_t), t_cov < np.max(day_gt_t)) - t_cov = t_cov[t_cov_bool] - - # Note: Interpolation is not needed, this is done as a convinience - interp = scipy.interpolate.interp1d(day_gt_t, day_gt_H[:, :3, 3], kind='nearest', axis=0) - node_poses = interp(t_cov) - - plt.figure() - plt.scatter(day_gt_H[:, 1, 3], day_gt_H[:, 0, 3], 1, c=-day_gt_H[:, 2, 3], linewidth=0) - plt.scatter(node_poses[:, 1], node_poses[:, 0], 1, c=-node_poses[:, 2], linewidth=5) - plt.axis('equal') - plt.title('Ground Truth Position of Nodes in SLAM Graph') - plt.xlabel('East (m)') - plt.ylabel('North (m)') - plt.colorbar() - - plt.show() - - t2 = time.time() - print('Done in {:.1f}s\n'.format(t2 - t0)) - - # Out files - out_folder = join(data_path, 'day_ply') - if not exists(out_folder): - makedirs(out_folder) - - # Focus on a particular point - p0 = np.array([-220, -527, 12]) - center_radius = 10.0 - point_radius = 50.0 - - # Loop on days - for d, day in enumerate(days): - - #if day != '2012-02-05': - # continue - day_min_t = gt_t[d][0] - day_max_t = gt_t[d][-1] - - frames_folder = join(data_path, 'frames_ply', day) - f_times = np.sort([float(f[:-4]) for f in listdir(frames_folder) if f[-4:] == '.ply']) - - # If we want, load only SLAM nodes - if only_SLAM_nodes: - - # Load node timestamps - cov_csv = join(data_path, cov_folder, cov_files[d]) - cov = np.loadtxt(cov_csv, delimiter=',') - t_cov = cov[:, 0] - t_cov_bool = np.logical_and(t_cov > day_min_t, t_cov < day_max_t) - t_cov = t_cov[t_cov_bool] - - # Find closest lidar frames - t_cov = np.expand_dims(t_cov, 1) - diffs = np.abs(t_cov - f_times) - inds = np.argmin(diffs, axis=1) - f_times = f_times[inds] - - # Is this frame in gt - f_t_bool = np.logical_and(f_times > day_min_t, f_times < day_max_t) - f_times = f_times[f_t_bool] - - # Interpolation gt poses to frame timestamps - interp = scipy.interpolate.interp1d(gt_t[d], gt_H[d], kind='nearest', axis=0) - frame_poses = interp(f_times) - - N = len(f_times) - world_points = [] - world_frames = [] - world_frames_c = [] - print('Reading', day, ' => ', N, 'files') - for f_i, f_t in enumerate(f_times): - - t1 = time.time() - - ######### - # GT pose - ######### - - H = frame_poses[f_i].astype(np.float32) - # s = '\n' - # for cc in H: - # for c in cc: - # s += '{:5.2f} '.format(c) - # s += '\n' - # print(s) - - ############# - # Focus check - ############# - - if np.linalg.norm(H[:3, 3] - p0) > center_radius: - continue - - ################################### - # Local frame coordinates for debug - ################################### - - # Create artificial frames - x = np.linspace(0, 1, 50, dtype=np.float32) - points = np.hstack((np.vstack((x, x*0, x*0)), np.vstack((x*0, x, x*0)), np.vstack((x*0, x*0, x)))).T - colors = ((points > 0.1).astype(np.float32) * 255).astype(np.uint8) - - hpoints = np.hstack((points, np.ones_like(points[:, :1]))) - hpoints = np.matmul(hpoints, H.T) - hpoints[:, 3] *= 0 - world_frames += [hpoints[:, :3]] - world_frames_c += [colors] - - ####################### - # Load velo point cloud - ####################### - - # Load frame ply file - f_name = '{:.0f}.ply'.format(f_t) - data = read_ply(join(frames_folder, f_name)) - points = np.vstack((data['x'], data['y'], data['z'])).T - #intensity = data['intensity'] - - hpoints = np.hstack((points, np.ones_like(points[:, :1]))) - hpoints = np.matmul(hpoints, H.T) - hpoints[:, 3] *= 0 - hpoints[:, 3] += np.sqrt(f_t - f_times[0]) - - # focus check - focus_bool = np.linalg.norm(hpoints[:, :3] - p0, axis=1) < point_radius - hpoints = hpoints[focus_bool, :] - - world_points += [hpoints] - - t2 = time.time() - print('File {:s} {:d}/{:d} Done in {:.1f}s'.format(f_name, f_i, N, t2 - t1)) - - if len(world_points) < 2: - continue - - world_points = np.vstack(world_points) - - - ###### DEBUG - world_frames = np.vstack(world_frames) - world_frames_c = np.vstack(world_frames_c) - write_ply('testf.ply', - [world_frames, world_frames_c], - ['x', 'y', 'z', 'red', 'green', 'blue']) - ###### DEBUG - - print(world_points.shape, world_points.dtype) - - # Subsample merged frames - # world_points, features = grid_subsampling(world_points[:, :3], - # features=world_points[:, 3:], - # sampleDl=0.1) - features = world_points[:, 3:] - world_points = world_points[:, :3] - - print(world_points.shape, world_points.dtype) - - write_ply('test' + day + '.ply', - [world_points, features], - ['x', 'y', 'z', 't']) - - - # Generate gt annotations - - # Subsample day ply (for visualization) - - # Save day ply - - # a = 1/0 diff --git a/train_NCLT.py b/train_NCLT.py deleted file mode 100644 index 0dd16bb..0000000 --- a/train_NCLT.py +++ /dev/null @@ -1,344 +0,0 @@ -# -# -# 0=================================0 -# | Kernel Point Convolutions | -# 0=================================0 -# -# -# ---------------------------------------------------------------------------------------------------------------------- -# -# Callable script to start a training on NCLT dataset -# -# ---------------------------------------------------------------------------------------------------------------------- -# -# Hugues THOMAS - 06/03/2020 -# - - -# ---------------------------------------------------------------------------------------------------------------------- -# -# Imports and global variables -# \**********************************/ -# - -# Common libs -import signal -import os -import numpy as np -import sys -import torch - -# Dataset -from datasets.NCLT import * -from torch.utils.data import DataLoader - -from utils.config import Config -from utils.trainer import ModelTrainer -from models.architectures import KPFCNN - - -# ---------------------------------------------------------------------------------------------------------------------- -# -# Config Class -# \******************/ -# - -class NCLTConfig(Config): - """ - Override the parameters you want to modify for this dataset - """ - - #################### - # Dataset parameters - #################### - - # Dataset name - dataset = 'NCLT' - - # Number of classes in the dataset (This value is overwritten by dataset class when Initializating dataset). - num_classes = None - - # Type of task performed on this dataset (also overwritten) - dataset_task = '' - - # Number of CPU threads for the input pipeline - input_threads = 10 - - ######################### - # Architecture definition - ######################### - - # Define layers - architecture = ['simple', - 'resnetb', - 'resnetb_strided', - 'resnetb', - 'resnetb', - 'resnetb_strided', - 'resnetb', - 'resnetb', - 'resnetb', - 'resnetb', - 'resnetb_strided', - 'resnetb', - 'resnetb', - 'resnetb', - 'resnetb_strided', - 'resnetb', - 'resnetb', - 'nearest_upsample', - 'unary', - 'nearest_upsample', - 'unary', - 'nearest_upsample', - 'unary', - 'nearest_upsample', - 'unary'] - - ################### - # KPConv parameters - ################### - - # Radius of the input sphere - in_radius = 6.0 - val_radius = 51.0 - n_frames = 1 - max_in_points = 100000 - max_val_points = 200000 - - # Number of batch - batch_num = 8 - val_batch_num = 1 - - # Number of kernel points - num_kernel_points = 15 - - # Size of the first subsampling grid in meter - first_subsampling_dl = 0.06 - - # Radius of convolution in "number grid cell". (2.5 is the standard value) - conv_radius = 2.5 - - # Radius of deformable convolution in "number grid cell". Larger so that deformed kernel can spread out - deform_radius = 6.0 - - # Radius of the area of influence of each kernel point in "number grid cell". (1.0 is the standard value) - KP_extent = 1.5 - - # Behavior of convolutions in ('constant', 'linear', 'gaussian') - KP_influence = 'linear' - - # Aggregation function of KPConv in ('closest', 'sum') - aggregation_mode = 'sum' - - # Choice of input features - first_features_dim = 128 - in_features_dim = 2 - - # Can the network learn modulations - modulated = False - - # Batch normalization parameters - use_batch_norm = True - batch_norm_momentum = 0.02 - - # Offset loss - # 'permissive' only constrains offsets inside the deform radius (NOT implemented yet) - # 'fitting' helps deformed kernels to adapt to the geometry by penalizing distance to input points - offsets_loss = 'fitting' - offsets_decay = 0.01 - - ##################### - # Training parameters - ##################### - - # Maximal number of epochs - max_epoch = 800 - - # Learning rate management - learning_rate = 1e-2 - momentum = 0.98 - lr_decays = {i: 0.1 ** (1 / 150) for i in range(1, max_epoch)} - grad_clip_norm = 100.0 - - # Number of steps per epochs - epoch_steps = 500 - - # Number of validation examples per epoch - validation_size = 200 - - # Number of epoch between each checkpoint - checkpoint_gap = 50 - - # Augmentations - augment_scale_anisotropic = True - augment_symmetries = [True, False, False] - augment_rotation = 'vertical' - augment_scale_min = 0.8 - augment_scale_max = 1.2 - augment_noise = 0.001 - augment_color = 0.8 - - # Choose weights for class (used in segmentation loss). Empty list for no weights - # class proportion for R=10.0 and dl=0.08 (first is unlabeled) - # 19.1 48.9 0.5 1.1 5.6 3.6 0.7 0.6 0.9 193.2 17.7 127.4 6.7 132.3 68.4 283.8 7.0 78.5 3.3 0.8 - # - # - - # sqrt(Inverse of proportion * 100) - # class_w = [1.430, 14.142, 9.535, 4.226, 5.270, 11.952, 12.910, 10.541, 0.719, - # 2.377, 0.886, 3.863, 0.869, 1.209, 0.594, 3.780, 1.129, 5.505, 11.180] - - # sqrt(Inverse of proportion * 100) capped (0.5 < X < 5) - # class_w = [1.430, 5.000, 5.000, 4.226, 5.000, 5.000, 5.000, 5.000, 0.719, 2.377, - # 0.886, 3.863, 0.869, 1.209, 0.594, 3.780, 1.129, 5.000, 5.000] - - - # Do we nee to save convergence - saving = True - saving_path = None - - -# ---------------------------------------------------------------------------------------------------------------------- -# -# Main Call -# \***************/ -# - -if __name__ == '__main__': - - #test_read_hits() - - #frames_to_ply() - - - merge_day_pointclouds() - - a = 1/0 - - - - - - - ############################ - # Initialize the environment - ############################ - - # Set which gpu is going to be used - GPU_ID = '2' - - # Set GPU visible device - os.environ['CUDA_VISIBLE_DEVICES'] = GPU_ID - - ############### - # Previous chkp - ############### - - # Choose here if you want to start training from a previous snapshot (None for new training) - # previous_training_path = 'Log_2020-03-19_19-53-27' - previous_training_path = '' - - # Choose index of checkpoint to start from. If None, uses the latest chkp - chkp_idx = None - if previous_training_path: - - # Find all snapshot in the chosen training folder - chkp_path = os.path.join('results', previous_training_path, 'checkpoints') - chkps = [f for f in os.listdir(chkp_path) if f[:4] == 'chkp'] - - # Find which snapshot to restore - if chkp_idx is None: - chosen_chkp = 'current_chkp.tar' - else: - chosen_chkp = np.sort(chkps)[chkp_idx] - chosen_chkp = os.path.join('results', previous_training_path, 'checkpoints', chosen_chkp) - - else: - chosen_chkp = None - - ############## - # Prepare Data - ############## - - print() - print('Data Preparation') - print('****************') - - # Initialize configuration class - config = NCLTConfig() - if previous_training_path: - config.load(os.path.join('results', previous_training_path)) - config.saving_path = None - - # Get path from argument if given - if len(sys.argv) > 1: - config.saving_path = sys.argv[1] - - # Initialize datasets - training_dataset = NCLTDataset(config, set='training', - balance_classes=True) - test_dataset = NCLTDataset(config, set='validation', - balance_classes=False) - - # Initialize samplers - training_sampler = NCLTSampler(training_dataset) - test_sampler = NCLTSampler(test_dataset) - - # Initialize the dataloader - training_loader = DataLoader(training_dataset, - batch_size=1, - sampler=training_sampler, - collate_fn=NCLTCollate, - num_workers=config.input_threads, - pin_memory=True) - test_loader = DataLoader(test_dataset, - batch_size=1, - sampler=test_sampler, - collate_fn=NCLTCollate, - num_workers=config.input_threads, - pin_memory=True) - - # Calibrate max_in_point value - training_sampler.calib_max_in(config, training_loader, verbose=True) - test_sampler.calib_max_in(config, test_loader, verbose=True) - - # Calibrate samplers - training_sampler.calibration(training_loader, verbose=True) - test_sampler.calibration(test_loader, verbose=True) - - # debug_timing(training_dataset, training_loader) - # debug_timing(test_dataset, test_loader) - # debug_class_w(training_dataset, training_loader) - - print('\nModel Preparation') - print('*****************') - - # Define network model - t1 = time.time() - net = KPFCNN(config, training_dataset.label_values, training_dataset.ignored_labels) - - debug = False - if debug: - print('\n*************************************\n') - print(net) - print('\n*************************************\n') - for param in net.parameters(): - if param.requires_grad: - print(param.shape) - print('\n*************************************\n') - print("Model size %i" % sum(param.numel() for param in net.parameters() if param.requires_grad)) - print('\n*************************************\n') - - # Define a trainer class - trainer = ModelTrainer(net, config, chkp_path=chosen_chkp) - print('Done in {:.1f}s\n'.format(time.time() - t1)) - - print('\nStart training') - print('**************') - - # Training - trainer.train(net, training_loader, test_loader, config) - - print('Forcing exit now') - os.kill(os.getpid(), signal.SIGINT) diff --git a/train_S3DIS.py b/train_S3DIS.py index 276fffd..cf7a018 100644 --- a/train_S3DIS.py +++ b/train_S3DIS.py @@ -24,9 +24,6 @@ # Common libs import signal import os -import numpy as np -import sys -import torch # Dataset from datasets.S3DIS import * @@ -271,6 +268,7 @@ if __name__ == '__main__': training_sampler.calibration(training_loader, verbose=True) test_sampler.calibration(test_loader, verbose=True) + # Optional debug functions # debug_timing(training_dataset, training_loader) # debug_timing(test_dataset, test_loader) # debug_upsampling(training_dataset, training_loader) diff --git a/visualize_ERFs.py b/visualize_ERFs.py deleted file mode 100644 index bd908a3..0000000 --- a/visualize_ERFs.py +++ /dev/null @@ -1,205 +0,0 @@ -# -# -# 0=================================0 -# | Kernel Point Convolutions | -# 0=================================0 -# -# -# ---------------------------------------------------------------------------------------------------------------------- -# -# Callable script to start a training on ModelNet40 dataset -# -# ---------------------------------------------------------------------------------------------------------------------- -# -# Hugues THOMAS - 06/03/2020 -# - - -# ---------------------------------------------------------------------------------------------------------------------- -# -# Imports and global variables -# \**********************************/ -# - -# Common libs -import signal -import os -import numpy as np -import sys -import torch - -# Dataset -from datasets.ModelNet40 import * -from datasets.S3DIS import * -from torch.utils.data import DataLoader - -from utils.config import Config -from utils.visualizer import ModelVisualizer -from models.architectures import KPCNN, KPFCNN - - -# ---------------------------------------------------------------------------------------------------------------------- -# -# Main Call -# \***************/ -# - -def model_choice(chosen_log): - - ########################### - # Call the test initializer - ########################### - - # Automatically retrieve the last trained model - if chosen_log in ['last_ModelNet40', 'last_ShapeNetPart', 'last_S3DIS']: - - # Dataset name - test_dataset = '_'.join(chosen_log.split('_')[1:]) - - # List all training logs - logs = np.sort([os.path.join('results', f) for f in os.listdir('results') if f.startswith('Log')]) - - # Find the last log of asked dataset - for log in logs[::-1]: - log_config = Config() - log_config.load(log) - if log_config.dataset.startswith(test_dataset): - chosen_log = log - break - - if chosen_log in ['last_ModelNet40', 'last_ShapeNetPart', 'last_S3DIS']: - raise ValueError('No log of the dataset "' + test_dataset + '" found') - - # Check if log exists - if not os.path.exists(chosen_log): - raise ValueError('The given log does not exists: ' + chosen_log) - - return chosen_log - - -# ---------------------------------------------------------------------------------------------------------------------- -# -# Main Call -# \***************/ -# - -if __name__ == '__main__': - - ############################### - # Choose the model to visualize - ############################### - - # Here you can choose which model you want to test with the variable test_model. Here are the possible values : - # - # > 'last_XXX': Automatically retrieve the last trained model on dataset XXX - # > '(old_)results/Log_YYYY-MM-DD_HH-MM-SS': Directly provide the path of a trained model - - # chosen_log = 'results/Log_2020-04-04_10-04-42' # => ModelNet40 - # chosen_log = 'results/Log_2020-04-04_10-04-42' # => S3DIS - chosen_log = 'results/Log_2020-04-22_12-28-37' # => S3DIS corrected - - # You can also choose the index of the snapshot to load (last by default) - chkp_idx = -1 - - # Eventually you can choose which feature is visualized (index of the deform operation in the network) - f_idx = -1 - - # Deal with 'last_XXX' choices - chosen_log = model_choice(chosen_log) - - ############################ - # Initialize the environment - ############################ - - # Set which gpu is going to be used - GPU_ID = '0' - - # Set GPU visible device - os.environ['CUDA_VISIBLE_DEVICES'] = GPU_ID - - ############### - # Previous chkp - ############### - - # Find all checkpoints in the chosen training folder - chkp_path = os.path.join(chosen_log, 'checkpoints') - chkps = [f for f in os.listdir(chkp_path) if f[:4] == 'chkp'] - - # Find which snapshot to restore - if chkp_idx is None: - chosen_chkp = 'current_chkp.tar' - else: - chosen_chkp = np.sort(chkps)[chkp_idx] - chosen_chkp = os.path.join(chosen_log, 'checkpoints', chosen_chkp) - - # Initialize configuration class - config = Config() - config.load(chosen_log) - - ################################## - # Change model parameters for test - ################################## - - # Change parameters for the test here. For example, you can stop augmenting the input data. - - config.augment_noise = 0.0001 - #config.augment_symmetries = False - config.batch_num = 1 - config.in_radius = 2.0 - config.input_threads = 0 - - ############## - # Prepare Data - ############## - - print() - print('Data Preparation') - print('****************') - - # Initiate dataset - if config.dataset.startswith('ModelNet40'): - test_dataset = ModelNet40Dataset(config, train=False) - test_sampler = ModelNet40Sampler(test_dataset) - collate_fn = ModelNet40Collate - elif config.dataset == 'S3DIS': - test_dataset = S3DISDataset(config, set='validation', use_potentials=True) - test_sampler = S3DISSampler(test_dataset) - collate_fn = S3DISCollate - else: - raise ValueError('Unsupported dataset : ' + config.dataset) - - # Data loader - test_loader = DataLoader(test_dataset, - batch_size=1, - sampler=test_sampler, - collate_fn=collate_fn, - num_workers=config.input_threads, - pin_memory=True) - - # Calibrate samplers - test_sampler.calibration(test_loader, verbose=True) - - print('\nModel Preparation') - print('*****************') - - # Define network model - t1 = time.time() - if config.dataset_task == 'classification': - net = KPCNN(config) - elif config.dataset_task in ['cloud_segmentation', 'slam_segmentation']: - net = KPFCNN(config, test_dataset.label_values, test_dataset.ignored_labels) - else: - raise ValueError('Unsupported dataset_task for deformation visu: ' + config.dataset_task) - - # Define a visualizer class - visualizer = ModelVisualizer(net, config, chkp_path=chosen_chkp, on_gpu=False) - print('Done in {:.1f}s\n'.format(time.time() - t1)) - - print('\nStart visualization') - print('*******************') - - # Training - visualizer.show_effective_recep_field(net, test_loader, config, f_idx) - - -