# # # 0=================================0 # | Kernel Point Convolutions | # 0=================================0 # # # ---------------------------------------------------------------------------------------------------------------------- # # Class handling datasets # # ---------------------------------------------------------------------------------------------------------------------- # # Hugues THOMAS - 11/06/2018 # # ---------------------------------------------------------------------------------------------------------------------- # # Imports and global variables # \**********************************/ # # Common libs import time import os import numpy as np import sys import torch from torch.utils.data import DataLoader, Dataset from utils.config import Config from utils.mayavi_visu import * from kernels.kernel_points import create_3D_rotations # Subsampling extension import cpp_wrappers.cpp_subsampling.grid_subsampling as cpp_subsampling import cpp_wrappers.cpp_neighbors.radius_neighbors as cpp_neighbors # ---------------------------------------------------------------------------------------------------------------------- # # Utility functions # \***********************/ # def grid_subsampling(points, features=None, labels=None, sampleDl=0.1, verbose=0): """ CPP wrapper for a grid subsampling (method = barycenter for points and features) :param points: (N, 3) matrix of input points :param features: optional (N, d) matrix of features (floating number) :param labels: optional (N,) matrix of integer labels :param sampleDl: parameter defining the size of grid voxels :param verbose: 1 to display :return: subsampled points, with features and/or labels depending of the input """ if (features is None) and (labels is None): return cpp_subsampling.subsample(points, sampleDl=sampleDl, verbose=verbose) elif (labels is None): return cpp_subsampling.subsample(points, features=features, sampleDl=sampleDl, verbose=verbose) elif (features is None): return cpp_subsampling.subsample(points, classes=labels, sampleDl=sampleDl, verbose=verbose) else: return cpp_subsampling.subsample(points, features=features, classes=labels, sampleDl=sampleDl, verbose=verbose) def batch_grid_subsampling(points, batches_len, features=None, labels=None, sampleDl=0.1, max_p=0, verbose=0): """ CPP wrapper for a grid subsampling (method = barycenter for points and features) :param points: (N, 3) matrix of input points :param features: optional (N, d) matrix of features (floating number) :param labels: optional (N,) matrix of integer labels :param sampleDl: parameter defining the size of grid voxels :param verbose: 1 to display :return: subsampled points, with features and/or labels depending of the input """ if (features is None) and (labels is None): return cpp_subsampling.subsample_batch(points, batches_len, sampleDl=sampleDl, max_p=max_p, verbose=verbose) elif (labels is None): return cpp_subsampling.subsample_batch(points, batches_len, features=features, sampleDl=sampleDl, max_p=max_p, verbose=verbose) elif (features is None): return cpp_subsampling.subsample_batch(points, batches_len, classes=labels, sampleDl=sampleDl, max_p=max_p, verbose=verbose) else: return cpp_subsampling.subsample_batch(points, batches_len, features=features, classes=labels, sampleDl=sampleDl, max_p=max_p, verbose=verbose) def batch_neighbors(queries, supports, q_batches, s_batches, radius): """ Computes neighbors for a batch of queries and supports :param queries: (N1, 3) the query points :param supports: (N2, 3) the support points :param q_batches: (B) the list of lengths of batch elements in queries :param s_batches: (B)the list of lengths of batch elements in supports :param radius: float32 :return: neighbors indices """ return cpp_neighbors.batch_query(queries, supports, q_batches, s_batches, radius=radius) # ---------------------------------------------------------------------------------------------------------------------- # # Class definition # \**********************/ class PointCloudDataset(Dataset): """Parent class for Point Cloud Datasets.""" def __init__(self, name): """ Initialize parameters of the dataset here. """ self.name = name self.path = '' self.label_to_names = {} self.num_classes = 0 self.label_values = np.zeros((0,), dtype=np.int32) self.label_names = [] self.label_to_idx = {} self.name_to_label = {} self.config = Config() self.neighborhood_limits = [] return def __len__(self): """ Return the length of data here """ return 0 def __getitem__(self, idx): """ Return the item at the given index """ return 0 def init_labels(self): # Initialize all label parameters given the label_to_names dict self.num_classes = len(self.label_to_names) self.label_values = np.sort([k for k, v in self.label_to_names.items()]) self.label_names = [self.label_to_names[k] for k in self.label_values] self.label_to_idx = {l: i for i, l in enumerate(self.label_values)} self.name_to_label = {v: k for k, v in self.label_to_names.items()} def augmentation_transform(self, points, normals=None, verbose=False): """Implementation of an augmentation transform for point clouds.""" ########## # Rotation ########## # Initialize rotation matrix R = np.eye(points.shape[1]) if points.shape[1] == 3: if self.config.augment_rotation == 'vertical': # Create random rotations theta = np.random.rand() * 2 * np.pi c, s = np.cos(theta), np.sin(theta) R = np.array([[c, -s, 0], [s, c, 0], [0, 0, 1]], dtype=np.float32) elif self.config.augment_rotation == 'all': # Choose two random angles for the first vector in polar coordinates theta = np.random.rand() * 2 * np.pi phi = (np.random.rand() - 0.5) * np.pi # Create the first vector in carthesian coordinates u = np.array([np.cos(theta) * np.cos(phi), np.sin(theta) * np.cos(phi), np.sin(phi)]) # Choose a random rotation angle alpha = np.random.rand() * 2 * np.pi # Create the rotation matrix with this vector and angle R = create_3D_rotations(np.reshape(u, (1, -1)), np.reshape(alpha, (1, -1)))[0] R = R.astype(np.float32) ####### # Scale ####### # Choose random scales for each example min_s = self.config.augment_scale_min max_s = self.config.augment_scale_max if self.config.augment_scale_anisotropic: scale = np.random.rand(points.shape[1]) * (max_s - min_s) + min_s else: scale = np.random.rand() * (max_s - min_s) - min_s # Add random symmetries to the scale factor symmetries = np.array(self.config.augment_symmetries).astype(np.int32) symmetries *= np.random.randint(2, size=points.shape[1]) scale = (scale * symmetries * 2 - 1).astype(np.float32) ####### # Noise ####### noise = (np.random.randn(points.shape[0], points.shape[1]) * self.config.augment_noise).astype(np.float32) ################## # Apply transforms ################## # Do not use np.dot because it is multi-threaded #augmented_points = np.dot(points, R) * scale + noise augmented_points = np.sum(np.expand_dims(points, 2) * R, axis=1) * scale + noise if normals is None: return augmented_points, scale, R else: # Anisotropic scale of the normals thanks to cross product formula normal_scale = scale[[1, 2, 0]] * scale[[2, 0, 1]] augmented_normals = np.dot(normals, R) * normal_scale # Renormalise augmented_normals *= 1 / (np.linalg.norm(augmented_normals, axis=1, keepdims=True) + 1e-6) if verbose: test_p = [np.vstack([points, augmented_points])] test_n = [np.vstack([normals, augmented_normals])] test_l = [np.hstack([points[:, 2]*0, augmented_points[:, 2]*0+1])] show_ModelNet_examples(test_p, test_n, test_l) return augmented_points, augmented_normals, scale, R def big_neighborhood_filter(self, neighbors, layer): """ Filter neighborhoods with max number of neighbors. Limit is set to keep XX% of the neighborhoods untouched. Limit is computed at initialization """ # crop neighbors matrix if len(self.neighborhood_limits) > 0: return neighbors[:, :self.neighborhood_limits[layer]] else: return neighbors def classification_inputs(self, stacked_points, stacked_features, labels, stack_lengths): # Starting radius of convolutions r_normal = self.config.first_subsampling_dl * self.config.conv_radius # Starting layer layer_blocks = [] # Lists of inputs input_points = [] input_neighbors = [] input_pools = [] input_stack_lengths = [] deform_layers = [] ###################### # Loop over the blocks ###################### arch = self.config.architecture for block_i, block in enumerate(arch): # Get all blocks of the layer if not ('pool' in block or 'strided' in block or 'global' in block or 'upsample' in block): layer_blocks += [block] continue # Convolution neighbors indices # ***************************** deform_layer = False if layer_blocks: # Convolutions are done in this layer, compute the neighbors with the good radius if np.any(['deformable' in blck for blck in layer_blocks]): r = r_normal * self.config.deform_radius / self.config.conv_radius deform_layer = True else: r = r_normal conv_i = batch_neighbors(stacked_points, stacked_points, stack_lengths, stack_lengths, r) else: # This layer only perform pooling, no neighbors required conv_i = np.zeros((0, 1), dtype=np.int32) # Pooling neighbors indices # ************************* # If end of layer is a pooling operation if 'pool' in block or 'strided' in block: # New subsampling length dl = 2 * r_normal / self.config.conv_radius # Subsampled points pool_p, pool_b = batch_grid_subsampling(stacked_points, stack_lengths, sampleDl=dl) # Radius of pooled neighbors if 'deformable' in block: r = r_normal * self.config.deform_radius / self.config.conv_radius deform_layer = True else: r = r_normal # Subsample indices pool_i = batch_neighbors(pool_p, stacked_points, pool_b, stack_lengths, r) else: # No pooling in the end of this layer, no pooling indices required pool_i = np.zeros((0, 1), dtype=np.int32) pool_p = np.zeros((0, 1), dtype=np.float32) pool_b = np.zeros((0,), dtype=np.int32) # Reduce size of neighbors matrices by eliminating furthest point conv_i = self.big_neighborhood_filter(conv_i, len(input_points)) pool_i = self.big_neighborhood_filter(pool_i, len(input_points)) # Updating input lists input_points += [stacked_points] input_neighbors += [conv_i.astype(np.int64)] input_pools += [pool_i.astype(np.int64)] input_stack_lengths += [stack_lengths] deform_layers += [deform_layer] # New points for next layer stacked_points = pool_p stack_lengths = pool_b # Update radius and reset blocks r_normal *= 2 layer_blocks = [] # Stop when meeting a global pooling or upsampling if 'global' in block or 'upsample' in block: break ############### # Return inputs ############### # Save deform layers # list of network inputs li = input_points + input_neighbors + input_pools + input_stack_lengths li += [stacked_features, labels] return li def segmentation_inputs(self, stacked_points, stacked_features, labels, stack_lengths): # Starting radius of convolutions r_normal = self.config.first_subsampling_dl * self.config.conv_radius # Starting layer layer_blocks = [] # Lists of inputs input_points = [] input_neighbors = [] input_pools = [] input_upsamples = [] input_stack_lengths = [] deform_layers = [] ###################### # Loop over the blocks ###################### arch = self.config.architecture for block_i, block in enumerate(arch): # Get all blocks of the layer if not ('pool' in block or 'strided' in block or 'global' in block or 'upsample' in block): layer_blocks += [block] continue # Convolution neighbors indices # ***************************** deform_layer = False if layer_blocks: # Convolutions are done in this layer, compute the neighbors with the good radius if np.any(['deformable' in blck for blck in layer_blocks]): r = r_normal * self.config.deform_radius / self.config.conv_radius deform_layer = True else: r = r_normal conv_i = batch_neighbors(stacked_points, stacked_points, stack_lengths, stack_lengths, r) else: # This layer only perform pooling, no neighbors required conv_i = np.zeros((0, 1), dtype=np.int32) # Pooling neighbors indices # ************************* # If end of layer is a pooling operation if 'pool' in block or 'strided' in block: # New subsampling length dl = 2 * r_normal / self.config.conv_radius # Subsampled points pool_p, pool_b = batch_grid_subsampling(stacked_points, stack_lengths, sampleDl=dl) # Radius of pooled neighbors if 'deformable' in block: r = r_normal * self.config.deform_radius / self.config.conv_radius deform_layer = True else: r = r_normal # Subsample indices pool_i = batch_neighbors(pool_p, stacked_points, pool_b, stack_lengths, r) # Upsample indices (with the radius of the next layer to keep wanted density) up_i = batch_neighbors(stacked_points, pool_p, stack_lengths, pool_b, 2 * r) else: # No pooling in the end of this layer, no pooling indices required pool_i = np.zeros((0, 1), dtype=np.int32) pool_p = np.zeros((0, 3), dtype=np.float32) pool_b = np.zeros((0,), dtype=np.int32) up_i = np.zeros((0, 1), dtype=np.int32) # Reduce size of neighbors matrices by eliminating furthest point conv_i = self.big_neighborhood_filter(conv_i, len(input_points)) pool_i = self.big_neighborhood_filter(pool_i, len(input_points)) if up_i.shape[0] > 0: up_i = self.big_neighborhood_filter(up_i, len(input_points)+1) # Updating input lists input_points += [stacked_points] input_neighbors += [conv_i.astype(np.int64)] input_pools += [pool_i.astype(np.int64)] input_upsamples += [up_i.astype(np.int64)] input_stack_lengths += [stack_lengths] deform_layers += [deform_layer] # New points for next layer stacked_points = pool_p stack_lengths = pool_b # Update radius and reset blocks r_normal *= 2 layer_blocks = [] # Stop when meeting a global pooling or upsampling if 'global' in block or 'upsample' in block: break ############### # Return inputs ############### # Save deform layers # list of network inputs li = input_points + input_neighbors + input_pools + input_upsamples + input_stack_lengths li += [stacked_features, labels] return li