KPConv-PyTorch/train_SemanticKitti.py
Laurent FAINSIN d0cdb8e4ee 🎨 black + ruff
2023-05-15 17:18:10 +02:00

337 lines
9.6 KiB
Python

#
#
# 0=================================0
# | Kernel Point Convolutions |
# 0=================================0
#
#
# ----------------------------------------------------------------------------------------------------------------------
#
# Callable script to start a training on SemanticKitti dataset
#
# ----------------------------------------------------------------------------------------------------------------------
#
# Hugues THOMAS - 06/03/2020
#
# ----------------------------------------------------------------------------------------------------------------------
#
# Imports and global variables
# \**********************************/
#
# Common libs
import signal
import os
import numpy as np
import sys
# Dataset
from datasetss.SemanticKitti import *
from torch.utils.data import DataLoader
from utils.config import Config
from utils.trainer import ModelTrainer
from models.architectures import KPFCNN
# ----------------------------------------------------------------------------------------------------------------------
#
# Config Class
# \******************/
#
class SemanticKittiConfig(Config):
"""
Override the parameters you want to modify for this dataset
"""
####################
# Dataset parameters
####################
# Dataset name
dataset = "SemanticKitti"
# Number of classes in the dataset (This value is overwritten by dataset class when Initializating dataset).
num_classes = None
# Type of task performed on this dataset (also overwritten)
dataset_task = ""
# Number of CPU threads for the input pipeline
input_threads = 10
#########################
# Architecture definition
#########################
# Define layers
architecture = [
"simple",
"resnetb",
"resnetb_strided",
"resnetb",
"resnetb",
"resnetb_strided",
"resnetb",
"resnetb",
"resnetb_strided",
"resnetb",
"resnetb",
"resnetb_strided",
"resnetb",
"nearest_upsample",
"unary",
"nearest_upsample",
"unary",
"nearest_upsample",
"unary",
"nearest_upsample",
"unary",
]
###################
# KPConv parameters
###################
# Radius of the input sphere
in_radius = 4.0
val_radius = 4.0
n_frames = 1
max_in_points = 100000
max_val_points = 100000
# Number of batch
batch_num = 8
val_batch_num = 8
# Number of kernel points
num_kernel_points = 15
# Size of the first subsampling grid in meter
first_subsampling_dl = 0.06
# Radius of convolution in "number grid cell". (2.5 is the standard value)
conv_radius = 2.5
# Radius of deformable convolution in "number grid cell". Larger so that deformed kernel can spread out
deform_radius = 6.0
# Radius of the area of influence of each kernel point in "number grid cell". (1.0 is the standard value)
KP_extent = 1.2
# Behavior of convolutions in ('constant', 'linear', 'gaussian')
KP_influence = "linear"
# Aggregation function of KPConv in ('closest', 'sum')
aggregation_mode = "sum"
# Choice of input features
first_features_dim = 128
in_features_dim = 2
# Can the network learn modulations
modulated = False
# Batch normalization parameters
use_batch_norm = True
batch_norm_momentum = 0.02
# Deformable offset loss
# 'point2point' fitting geometry by penalizing distance from deform point to input points
# 'point2plane' fitting geometry by penalizing distance from deform point to input point triplet (not implemented)
deform_fitting_mode = "point2point"
deform_fitting_power = 1.0 # Multiplier for the fitting/repulsive loss
deform_lr_factor = 0.1 # Multiplier for learning rate applied to the deformations
repulse_extent = 1.2 # Distance of repulsion for deformed kernel points
#####################
# Training parameters
#####################
# Maximal number of epochs
max_epoch = 800
# Learning rate management
learning_rate = 1e-2
momentum = 0.98
lr_decays = {i: 0.1 ** (1 / 150) for i in range(1, max_epoch)}
grad_clip_norm = 100.0
# Number of steps per epochs
epoch_steps = 500
# Number of validation examples per epoch
validation_size = 200
# Number of epoch between each checkpoint
checkpoint_gap = 50
# Augmentations
augment_scale_anisotropic = True
augment_symmetries = [True, False, False]
augment_rotation = "vertical"
augment_scale_min = 0.8
augment_scale_max = 1.2
augment_noise = 0.001
augment_color = 0.8
# Choose weights for class (used in segmentation loss). Empty list for no weights
# class proportion for R=10.0 and dl=0.08 (first is unlabeled)
# 19.1 48.9 0.5 1.1 5.6 3.6 0.7 0.6 0.9 193.2 17.7 127.4 6.7 132.3 68.4 283.8 7.0 78.5 3.3 0.8
#
#
# sqrt(Inverse of proportion * 100)
# class_w = [1.430, 14.142, 9.535, 4.226, 5.270, 11.952, 12.910, 10.541, 0.719,
# 2.377, 0.886, 3.863, 0.869, 1.209, 0.594, 3.780, 1.129, 5.505, 11.180]
# sqrt(Inverse of proportion * 100) capped (0.5 < X < 5)
# class_w = [1.430, 5.000, 5.000, 4.226, 5.000, 5.000, 5.000, 5.000, 0.719, 2.377,
# 0.886, 3.863, 0.869, 1.209, 0.594, 3.780, 1.129, 5.000, 5.000]
# Do we nee to save convergence
saving = True
saving_path = None
# ----------------------------------------------------------------------------------------------------------------------
#
# Main Call
# \***************/
#
if __name__ == "__main__":
############################
# Initialize the environment
############################
# Set which gpu is going to be used
GPU_ID = "0"
# Set GPU visible device
os.environ["CUDA_VISIBLE_DEVICES"] = GPU_ID
###############
# Previous chkp
###############
# Choose here if you want to start training from a previous snapshot (None for new training)
# previous_training_path = 'Log_2020-03-19_19-53-27'
previous_training_path = ""
# Choose index of checkpoint to start from. If None, uses the latest chkp
chkp_idx = None
if previous_training_path:
# Find all snapshot in the chosen training folder
chkp_path = os.path.join("results", previous_training_path, "checkpoints")
chkps = [f for f in os.listdir(chkp_path) if f[:4] == "chkp"]
# Find which snapshot to restore
if chkp_idx is None:
chosen_chkp = "current_chkp.tar"
else:
chosen_chkp = np.sort(chkps)[chkp_idx]
chosen_chkp = os.path.join(
"results", previous_training_path, "checkpoints", chosen_chkp
)
else:
chosen_chkp = None
##############
# Prepare Data
##############
print()
print("Data Preparation")
print("****************")
# Initialize configuration class
config = SemanticKittiConfig()
if previous_training_path:
config.load(os.path.join("results", previous_training_path))
config.saving_path = None
# Get path from argument if given
if len(sys.argv) > 1:
config.saving_path = sys.argv[1]
# Initialize datasets
training_dataset = SemanticKittiDataset(
config, set="training", balance_classes=True
)
test_dataset = SemanticKittiDataset(config, set="validation", balance_classes=False)
# Initialize samplers
training_sampler = SemanticKittiSampler(training_dataset)
test_sampler = SemanticKittiSampler(test_dataset)
# Initialize the dataloader
training_loader = DataLoader(
training_dataset,
batch_size=1,
sampler=training_sampler,
collate_fn=SemanticKittiCollate,
num_workers=config.input_threads,
pin_memory=True,
)
test_loader = DataLoader(
test_dataset,
batch_size=1,
sampler=test_sampler,
collate_fn=SemanticKittiCollate,
num_workers=config.input_threads,
pin_memory=True,
)
# Calibrate max_in_point value
training_sampler.calib_max_in(config, training_loader, verbose=True)
test_sampler.calib_max_in(config, test_loader, verbose=True)
# Calibrate samplers
training_sampler.calibration(training_loader, verbose=True)
test_sampler.calibration(test_loader, verbose=True)
# debug_timing(training_dataset, training_loader)
# debug_timing(test_dataset, test_loader)
# debug_class_w(training_dataset, training_loader)
print("\nModel Preparation")
print("*****************")
# Define network model
t1 = time.time()
net = KPFCNN(config, training_dataset.label_values, training_dataset.ignored_labels)
debug = False
if debug:
print("\n*************************************\n")
print(net)
print("\n*************************************\n")
for param in net.parameters():
if param.requires_grad:
print(param.shape)
print("\n*************************************\n")
print(
"Model size %i"
% sum(param.numel() for param in net.parameters() if param.requires_grad)
)
print("\n*************************************\n")
# Define a trainer class
trainer = ModelTrainer(net, config, chkp_path=chosen_chkp)
print("Done in {:.1f}s\n".format(time.time() - t1))
print("\nStart training")
print("**************")
# Training
trainer.train(net, training_loader, test_loader, config)
print("Forcing exit now")
os.kill(os.getpid(), signal.SIGINT)