364 lines
13 KiB
Python
364 lines
13 KiB
Python
#
|
|
#
|
|
# 0=================================0
|
|
# | Kernel Point Convolutions |
|
|
# 0=================================0
|
|
#
|
|
#
|
|
# ----------------------------------------------------------------------------------------------------------------------
|
|
#
|
|
# Configuration class
|
|
#
|
|
# ----------------------------------------------------------------------------------------------------------------------
|
|
#
|
|
# Hugues THOMAS - 11/06/2018
|
|
#
|
|
|
|
|
|
from os.path import join
|
|
import numpy as np
|
|
|
|
|
|
# Colors for printing
|
|
class bcolors:
|
|
HEADER = '\033[95m'
|
|
OKBLUE = '\033[94m'
|
|
OKGREEN = '\033[92m'
|
|
WARNING = '\033[93m'
|
|
FAIL = '\033[91m'
|
|
ENDC = '\033[0m'
|
|
BOLD = '\033[1m'
|
|
UNDERLINE = '\033[4m'
|
|
|
|
|
|
class Config:
|
|
"""
|
|
Class containing the parameters you want to modify for this dataset
|
|
"""
|
|
|
|
##################
|
|
# Input parameters
|
|
##################
|
|
|
|
# Dataset name
|
|
dataset = ''
|
|
|
|
# Type of network model
|
|
dataset_task = ''
|
|
|
|
# Number of classes in the dataset
|
|
num_classes = 0
|
|
|
|
# Dimension of input points
|
|
in_points_dim = 3
|
|
|
|
# Dimension of input features
|
|
in_features_dim = 1
|
|
|
|
# Radius of the input sphere (ignored for models, only used for point clouds)
|
|
in_radius = 1.0
|
|
|
|
# Number of CPU threads for the input pipeline
|
|
input_threads = 8
|
|
|
|
##################
|
|
# Model parameters
|
|
##################
|
|
|
|
# Architecture definition. List of blocks
|
|
architecture = []
|
|
|
|
# Decide the mode of equivariance and invariance
|
|
equivar_mode = ''
|
|
invar_mode = ''
|
|
|
|
# Dimension of the first feature maps
|
|
first_features_dim = 64
|
|
|
|
# Batch normalization parameters
|
|
use_batch_norm = True
|
|
batch_norm_momentum = 0.99
|
|
|
|
# For segmentation models : ratio between the segmented area and the input area
|
|
segmentation_ratio = 1.0
|
|
|
|
###################
|
|
# KPConv parameters
|
|
###################
|
|
|
|
# Number of kernel points
|
|
num_kernel_points = 15
|
|
|
|
# Size of the first subsampling grid in meter
|
|
first_subsampling_dl = 0.02
|
|
|
|
# Radius of convolution in "number grid cell". (2.5 is the standard value)
|
|
conv_radius = 2.5
|
|
|
|
# Radius of deformable convolution in "number grid cell". Larger so that deformed kernel can spread out
|
|
deform_radius = 5.0
|
|
|
|
# Kernel point influence radius
|
|
KP_extent = 1.0
|
|
|
|
# Influence function when d < KP_extent. ('constant', 'linear', 'gaussian') When d > KP_extent, always zero
|
|
KP_influence = 'linear'
|
|
|
|
# Aggregation function of KPConv in ('closest', 'sum')
|
|
# Decide if you sum all kernel point influences, or if you only take the influence of the closest KP
|
|
aggregation_mode = 'sum'
|
|
|
|
# Fixed points in the kernel : 'none', 'center' or 'verticals'
|
|
fixed_kernel_points = 'center'
|
|
|
|
# Use modulateion in deformable convolutions
|
|
modulated = False
|
|
|
|
# For SLAM datasets like SemanticKitti number of frames used (minimum one)
|
|
n_frames = 1
|
|
|
|
# For SLAM datasets like SemanticKitti max number of point in input cloud
|
|
max_in_points = 0
|
|
|
|
#####################
|
|
# Training parameters
|
|
#####################
|
|
|
|
# Network optimizer parameters (learning rate and momentum)
|
|
learning_rate = 1e-3
|
|
momentum = 0.9
|
|
|
|
# Learning rate decays. Dictionary of all decay values with their epoch {epoch: decay}.
|
|
lr_decays = {200: 0.2, 300: 0.2}
|
|
|
|
# Gradient clipping value (negative means no clipping)
|
|
grad_clip_norm = 100.0
|
|
|
|
# Augmentation parameters
|
|
augment_scale_anisotropic = True
|
|
augment_scale_min = 0.9
|
|
augment_scale_max = 1.1
|
|
augment_symmetries = [False, False, False]
|
|
augment_rotation = 'vertical'
|
|
augment_noise = 0.005
|
|
augment_color = 0.7
|
|
|
|
# Augment with occlusions (not implemented yet)
|
|
augment_occlusion = 'planar'
|
|
augment_occlusion_ratio = 0.2
|
|
augment_occlusion_num = 1
|
|
|
|
# Regularization loss importance
|
|
weight_decay = 1e-3
|
|
|
|
# The way we balance segmentation loss
|
|
# > 'none': Each point in the whole batch has the same contribution.
|
|
# > 'class': Each class has the same contribution (points are weighted according to class balance)
|
|
# > 'batch': Each cloud in the batch has the same contribution (points are weighted according cloud sizes)
|
|
segloss_balance = 'none'
|
|
|
|
# Offset regularization loss
|
|
offsets_loss = 'permissive'
|
|
offsets_decay = 1e-2
|
|
|
|
# Number of batch
|
|
batch_num = 10
|
|
|
|
# Maximal number of epochs
|
|
max_epoch = 1000
|
|
|
|
# Number of steps per epochs
|
|
epoch_steps = 1000
|
|
|
|
# Number of validation examples per epoch
|
|
validation_size = 100
|
|
|
|
# Number of epoch between each checkpoint
|
|
checkpoint_gap = 50
|
|
|
|
# Do we nee to save convergence
|
|
saving = True
|
|
saving_path = None
|
|
|
|
def __init__(self):
|
|
"""
|
|
Class Initialyser
|
|
"""
|
|
|
|
# Number of layers
|
|
self.num_layers = len([block for block in self.architecture if 'pool' in block or 'strided' in block]) + 1
|
|
|
|
###################
|
|
# Deform layer list
|
|
###################
|
|
#
|
|
# List of boolean indicating which layer has a deformable convolution
|
|
#
|
|
|
|
layer_blocks = []
|
|
self.deform_layers = []
|
|
arch = self.architecture
|
|
for block_i, block in enumerate(arch):
|
|
|
|
# Get all blocks of the layer
|
|
if not ('pool' in block or 'strided' in block or 'global' in block or 'upsample' in block):
|
|
layer_blocks += [block]
|
|
continue
|
|
|
|
# Convolution neighbors indices
|
|
# *****************************
|
|
|
|
deform_layer = False
|
|
if layer_blocks:
|
|
if np.any(['deformable' in blck for blck in layer_blocks]):
|
|
deform_layer = True
|
|
|
|
if 'pool' in block or 'strided' in block:
|
|
if 'deformable' in block:
|
|
deform_layer = True
|
|
|
|
self.deform_layers += [deform_layer]
|
|
layer_blocks = []
|
|
|
|
# Stop when meeting a global pooling or upsampling
|
|
if 'global' in block or 'upsample' in block:
|
|
break
|
|
|
|
def load(self, path):
|
|
|
|
filename = join(path, 'parameters.txt')
|
|
with open(filename, 'r') as f:
|
|
lines = f.readlines()
|
|
|
|
# Class variable dictionary
|
|
for line in lines:
|
|
line_info = line.split()
|
|
if len(line_info) > 1 and line_info[0] != '#':
|
|
|
|
if line_info[2] == 'None':
|
|
setattr(self, line_info[0], None)
|
|
|
|
elif line_info[0] == 'lr_decay_epochs':
|
|
self.lr_decays = {int(b.split(':')[0]): float(b.split(':')[1]) for b in line_info[2:]}
|
|
|
|
elif line_info[0] == 'architecture':
|
|
self.architecture = [b for b in line_info[2:]]
|
|
|
|
elif line_info[0] == 'augment_symmetries':
|
|
self.augment_symmetries = [bool(int(b)) for b in line_info[2:]]
|
|
|
|
elif line_info[0] == 'num_classes':
|
|
if len(line_info) > 3:
|
|
self.num_classes = [int(c) for c in line_info[2:]]
|
|
else:
|
|
self.num_classes = int(line_info[2])
|
|
|
|
else:
|
|
attr_type = type(getattr(self, line_info[0]))
|
|
if attr_type == bool:
|
|
setattr(self, line_info[0], attr_type(int(line_info[2])))
|
|
else:
|
|
setattr(self, line_info[0], attr_type(line_info[2]))
|
|
|
|
self.saving = True
|
|
self.saving_path = path
|
|
self.__init__()
|
|
|
|
def save(self):
|
|
|
|
with open(join(self.saving_path, 'parameters.txt'), "w") as text_file:
|
|
|
|
text_file.write('# -----------------------------------#\n')
|
|
text_file.write('# Parameters of the training session #\n')
|
|
text_file.write('# -----------------------------------#\n\n')
|
|
|
|
# Input parameters
|
|
text_file.write('# Input parameters\n')
|
|
text_file.write('# ****************\n\n')
|
|
text_file.write('dataset = {:s}\n'.format(self.dataset))
|
|
text_file.write('dataset_task = {:s}\n'.format(self.dataset_task))
|
|
if type(self.num_classes) is list:
|
|
text_file.write('num_classes =')
|
|
for n in self.num_classes:
|
|
text_file.write(' {:d}'.format(n))
|
|
text_file.write('\n')
|
|
else:
|
|
text_file.write('num_classes = {:d}\n'.format(self.num_classes))
|
|
text_file.write('in_points_dim = {:d}\n'.format(self.in_points_dim))
|
|
text_file.write('in_features_dim = {:d}\n'.format(self.in_features_dim))
|
|
text_file.write('in_radius = {:.3f}\n'.format(self.in_radius))
|
|
text_file.write('input_threads = {:d}\n\n'.format(self.input_threads))
|
|
|
|
# Model parameters
|
|
text_file.write('# Model parameters\n')
|
|
text_file.write('# ****************\n\n')
|
|
|
|
text_file.write('architecture =')
|
|
for a in self.architecture:
|
|
text_file.write(' {:s}'.format(a))
|
|
text_file.write('\n')
|
|
text_file.write('equivar_mode = {:s}\n'.format(self.equivar_mode))
|
|
text_file.write('invar_mode = {:s}\n'.format(self.invar_mode))
|
|
text_file.write('num_layers = {:d}\n'.format(self.num_layers))
|
|
text_file.write('first_features_dim = {:d}\n'.format(self.first_features_dim))
|
|
text_file.write('use_batch_norm = {:d}\n'.format(int(self.use_batch_norm)))
|
|
text_file.write('batch_norm_momentum = {:.3f}\n\n'.format(self.batch_norm_momentum))
|
|
text_file.write('segmentation_ratio = {:.3f}\n\n'.format(self.segmentation_ratio))
|
|
|
|
# KPConv parameters
|
|
text_file.write('# KPConv parameters\n')
|
|
text_file.write('# *****************\n\n')
|
|
|
|
text_file.write('first_subsampling_dl = {:.3f}\n'.format(self.first_subsampling_dl))
|
|
text_file.write('num_kernel_points = {:d}\n'.format(self.num_kernel_points))
|
|
text_file.write('conv_radius = {:.3f}\n'.format(self.conv_radius))
|
|
text_file.write('deform_radius = {:.3f}\n'.format(self.deform_radius))
|
|
text_file.write('fixed_kernel_points = {:s}\n'.format(self.fixed_kernel_points))
|
|
text_file.write('KP_extent = {:.3f}\n'.format(self.KP_extent))
|
|
text_file.write('KP_influence = {:s}\n'.format(self.KP_influence))
|
|
text_file.write('aggregation_mode = {:s}\n'.format(self.aggregation_mode))
|
|
text_file.write('modulated = {:d}\n'.format(int(self.modulated)))
|
|
text_file.write('n_frames = {:d}\n'.format(self.n_frames))
|
|
text_file.write('max_in_points = {:d}\n\n'.format(self.max_in_points))
|
|
|
|
# Training parameters
|
|
text_file.write('# Training parameters\n')
|
|
text_file.write('# *******************\n\n')
|
|
|
|
text_file.write('learning_rate = {:f}\n'.format(self.learning_rate))
|
|
text_file.write('momentum = {:f}\n'.format(self.momentum))
|
|
text_file.write('lr_decay_epochs =')
|
|
for e, d in self.lr_decays.items():
|
|
text_file.write(' {:d}:{:f}'.format(e, d))
|
|
text_file.write('\n')
|
|
text_file.write('grad_clip_norm = {:f}\n\n'.format(self.grad_clip_norm))
|
|
|
|
|
|
text_file.write('augment_symmetries =')
|
|
for a in self.augment_symmetries:
|
|
text_file.write(' {:d}'.format(int(a)))
|
|
text_file.write('\n')
|
|
text_file.write('augment_rotation = {:s}\n'.format(self.augment_rotation))
|
|
text_file.write('augment_noise = {:f}\n'.format(self.augment_noise))
|
|
text_file.write('augment_occlusion = {:s}\n'.format(self.augment_occlusion))
|
|
text_file.write('augment_occlusion_ratio = {:.3f}\n'.format(self.augment_occlusion_ratio))
|
|
text_file.write('augment_occlusion_num = {:d}\n'.format(self.augment_occlusion_num))
|
|
text_file.write('augment_scale_anisotropic = {:d}\n'.format(int(self.augment_scale_anisotropic)))
|
|
text_file.write('augment_scale_min = {:.3f}\n'.format(self.augment_scale_min))
|
|
text_file.write('augment_scale_max = {:.3f}\n'.format(self.augment_scale_max))
|
|
text_file.write('augment_color = {:.3f}\n\n'.format(self.augment_color))
|
|
|
|
text_file.write('weight_decay = {:f}\n'.format(self.weight_decay))
|
|
text_file.write('segloss_balance = {:s}\n'.format(self.segloss_balance))
|
|
text_file.write('offsets_loss = {:s}\n'.format(self.offsets_loss))
|
|
text_file.write('offsets_decay = {:f}\n'.format(self.offsets_decay))
|
|
text_file.write('batch_num = {:d}\n'.format(self.batch_num))
|
|
text_file.write('max_epoch = {:d}\n'.format(self.max_epoch))
|
|
if self.epoch_steps is None:
|
|
text_file.write('epoch_steps = None\n')
|
|
else:
|
|
text_file.write('epoch_steps = {:d}\n'.format(self.epoch_steps))
|
|
text_file.write('validation_size = {:d}\n'.format(self.validation_size))
|
|
text_file.write('checkpoint_gap = {:d}\n'.format(self.checkpoint_gap))
|
|
|