503 lines
14 KiB
Python
503 lines
14 KiB
Python
#
|
|
#
|
|
# 0=================================0
|
|
# | Kernel Point Convolutions |
|
|
# 0=================================0
|
|
#
|
|
#
|
|
# ----------------------------------------------------------------------------------------------------------------------
|
|
#
|
|
# Class handling SemanticKitti dataset.
|
|
# Implements a Dataset, a Sampler, and a collate_fn
|
|
#
|
|
# ----------------------------------------------------------------------------------------------------------------------
|
|
#
|
|
# Hugues THOMAS - 11/06/2018
|
|
#
|
|
|
|
|
|
# ----------------------------------------------------------------------------------------------------------------------
|
|
#
|
|
# Imports and global variables
|
|
# \**********************************/
|
|
#
|
|
|
|
# Common libs
|
|
import sys
|
|
import struct
|
|
import scipy
|
|
import time
|
|
import numpy as np
|
|
import pickle
|
|
import torch
|
|
import yaml
|
|
#from mayavi import mlab
|
|
from multiprocessing import Lock
|
|
|
|
import matplotlib.pyplot as plt
|
|
from mpl_toolkits.mplot3d import Axes3D
|
|
|
|
|
|
# OS functions
|
|
from os import listdir
|
|
from os.path import exists, join, isdir, getsize
|
|
|
|
# Dataset parent class
|
|
from datasets.common import *
|
|
from torch.utils.data import Sampler, get_worker_info
|
|
from utils.mayavi_visu import *
|
|
from utils.metrics import fast_confusion
|
|
|
|
from datasets.common import grid_subsampling
|
|
from utils.config import bcolors
|
|
|
|
|
|
def ssc_to_homo(ssc, ssc_in_radians=True):
|
|
|
|
# Convert 6-DOF ssc coordinate transformation to 4x4 homogeneous matrix
|
|
# transformation
|
|
|
|
if ssc.ndim == 1:
|
|
reduce = True
|
|
ssc = np.expand_dims(ssc, 0)
|
|
else:
|
|
reduce = False
|
|
|
|
if not ssc_in_radians:
|
|
ssc[:, 3:] = np.pi / 180.0 * ssc[:, 3:]
|
|
|
|
sr = np.sin(ssc[:, 3])
|
|
cr = np.cos(ssc[:, 3])
|
|
|
|
sp = np.sin(ssc[:, 4])
|
|
cp = np.cos(ssc[:, 4])
|
|
|
|
sh = np.sin(ssc[:, 5])
|
|
ch = np.cos(ssc[:, 5])
|
|
|
|
H = np.zeros((ssc.shape[0], 4, 4))
|
|
|
|
H[:, 0, 0] = ch*cp
|
|
H[:, 0, 1] = -sh*cr + ch*sp*sr
|
|
H[:, 0, 2] = sh*sr + ch*sp*cr
|
|
H[:, 1, 0] = sh*cp
|
|
H[:, 1, 1] = ch*cr + sh*sp*sr
|
|
H[:, 1, 2] = -ch*sr + sh*sp*cr
|
|
H[:, 2, 0] = -sp
|
|
H[:, 2, 1] = cp*sr
|
|
H[:, 2, 2] = cp*cr
|
|
|
|
H[:, 0, 3] = ssc[:, 0]
|
|
H[:, 1, 3] = ssc[:, 1]
|
|
H[:, 2, 3] = ssc[:, 2]
|
|
|
|
H[:, 3, 3] = 1
|
|
|
|
if reduce:
|
|
H = np.squeeze(H)
|
|
|
|
return H
|
|
|
|
|
|
def verify_magic(s):
|
|
|
|
magic = 44444
|
|
|
|
m = struct.unpack('<HHHH', s)
|
|
|
|
return len(m)>=4 and m[0] == magic and m[1] == magic and m[2] == magic and m[3] == magic
|
|
|
|
|
|
def test_read_hits():
|
|
|
|
data_path = '../../Data/NCLT'
|
|
velo_folder = 'velodyne_data'
|
|
day = '2012-01-08'
|
|
|
|
hits_path = join(data_path, velo_folder, day, 'velodyne_hits.bin')
|
|
|
|
all_utimes = []
|
|
all_hits = []
|
|
all_ints = []
|
|
|
|
num_bytes = getsize(hits_path)
|
|
current_bytes = 0
|
|
|
|
with open(hits_path, 'rb') as f_bin:
|
|
|
|
total_hits = 0
|
|
first_utime = -1
|
|
last_utime = -1
|
|
|
|
while True:
|
|
|
|
magic = f_bin.read(8)
|
|
if magic == b'':
|
|
break
|
|
|
|
if not verify_magic(magic):
|
|
print('Could not verify magic')
|
|
|
|
num_hits = struct.unpack('<I', f_bin.read(4))[0]
|
|
utime = struct.unpack('<Q', f_bin.read(8))[0]
|
|
|
|
# Do not convert padding (it is an int always equal to zero)
|
|
padding = f_bin.read(4)
|
|
|
|
total_hits += num_hits
|
|
if first_utime == -1:
|
|
first_utime = utime
|
|
last_utime = utime
|
|
|
|
hits = []
|
|
ints = []
|
|
|
|
for i in range(num_hits):
|
|
|
|
x = struct.unpack('<H', f_bin.read(2))[0]
|
|
y = struct.unpack('<H', f_bin.read(2))[0]
|
|
z = struct.unpack('<H', f_bin.read(2))[0]
|
|
i = struct.unpack('B', f_bin.read(1))[0]
|
|
l = struct.unpack('B', f_bin.read(1))[0]
|
|
|
|
hits += [[x, y, z]]
|
|
ints += [i]
|
|
|
|
utimes = np.full((num_hits,), utime - first_utime, dtype=np.int32)
|
|
ints = np.array(ints, dtype=np.uint8)
|
|
hits = np.array(hits, dtype=np.float32)
|
|
hits *= 0.005
|
|
hits += -100.0
|
|
|
|
all_utimes.append(utimes)
|
|
all_hits.append(hits)
|
|
all_ints.append(ints)
|
|
|
|
if 100 * current_bytes / num_bytes > 0.1:
|
|
break
|
|
|
|
current_bytes += 24 + 8 * num_hits
|
|
|
|
print('{:d}/{:d} => {:.1f}%'.format(current_bytes, num_bytes, 100 * current_bytes / num_bytes))
|
|
|
|
all_utimes = np.hstack(all_utimes)
|
|
all_hits = np.vstack(all_hits)
|
|
all_ints = np.hstack(all_ints)
|
|
|
|
write_ply('test_hits',
|
|
[all_hits, all_ints, all_utimes],
|
|
['x', 'y', 'z', 'intensity', 'utime'])
|
|
|
|
print("Read %d total hits from %ld to %ld" % (total_hits, first_utime, last_utime))
|
|
|
|
return 0
|
|
|
|
|
|
def frames_to_ply(show_frames=False):
|
|
|
|
# In files
|
|
data_path = '../../Data/NCLT'
|
|
velo_folder = 'velodyne_data'
|
|
|
|
days = np.sort([d for d in listdir(join(data_path, velo_folder))])
|
|
|
|
for day in days:
|
|
|
|
# Out files
|
|
ply_folder = join(data_path, 'frames_ply', day)
|
|
if not exists(ply_folder):
|
|
makedirs(ply_folder)
|
|
|
|
day_path = join(data_path, velo_folder, day, 'velodyne_sync')
|
|
f_names = np.sort([f for f in listdir(day_path) if f[-4:] == '.bin'])
|
|
|
|
N = len(f_names)
|
|
print('Reading', N, 'files')
|
|
|
|
for f_i, f_name in enumerate(f_names):
|
|
|
|
ply_name = join(ply_folder, f_name[:-4] + '.ply')
|
|
if exists(ply_name):
|
|
continue
|
|
|
|
|
|
t1 = time.time()
|
|
|
|
hits = []
|
|
ints = []
|
|
|
|
with open(join(day_path, f_name), 'rb') as f_bin:
|
|
|
|
while True:
|
|
x_str = f_bin.read(2)
|
|
|
|
# End of file
|
|
if x_str == b'':
|
|
break
|
|
|
|
x = struct.unpack('<H', x_str)[0]
|
|
y = struct.unpack('<H', f_bin.read(2))[0]
|
|
z = struct.unpack('<H', f_bin.read(2))[0]
|
|
intensity = struct.unpack('B', f_bin.read(1))[0]
|
|
l = struct.unpack('B', f_bin.read(1))[0]
|
|
|
|
hits += [[x, y, z]]
|
|
ints += [intensity]
|
|
|
|
ints = np.array(ints, dtype=np.uint8)
|
|
hits = np.array(hits, dtype=np.float32)
|
|
hits *= 0.005
|
|
hits += -100.0
|
|
|
|
write_ply(ply_name,
|
|
[hits, ints],
|
|
['x', 'y', 'z', 'intensity'])
|
|
|
|
t2 = time.time()
|
|
print('File {:s} {:d}/{:d} Done in {:.1f}s'.format(f_name, f_i, N, t2 - t1))
|
|
|
|
if show_frames:
|
|
fig = plt.figure()
|
|
ax = fig.add_subplot(111, projection='3d')
|
|
ax.scatter(hits[:, 0], hits[:, 1], -hits[:, 2], c=-hits[:, 2], s=5, linewidths=0)
|
|
plt.show()
|
|
|
|
return 0
|
|
|
|
|
|
def merge_day_pointclouds(show_day_trajectory=False, only_SLAM_nodes=False):
|
|
"""
|
|
Recreate the whole day point cloud thks to gt pose
|
|
Generate gt_annotation of mobile objects
|
|
"""
|
|
|
|
# In files
|
|
data_path = '../../Data/NCLT'
|
|
gt_folder = 'ground_truth'
|
|
cov_folder = 'ground_truth_cov'
|
|
|
|
# Transformation from body to velodyne frame (from NCLT paper)
|
|
x_body_velo = np.array([0.002, -0.004, -0.957, 0.807, 0.166, -90.703])
|
|
H_body_velo = ssc_to_homo(x_body_velo, ssc_in_radians=False)
|
|
H_velo_body = np.linalg.inv(H_body_velo)
|
|
x_body_lb3 = np.array([0.035, 0.002, -1.23, -179.93, -0.23, 0.50])
|
|
H_body_lb3 = ssc_to_homo(x_body_lb3, ssc_in_radians=False)
|
|
H_lb3_body = np.linalg.inv(H_body_lb3)
|
|
|
|
# Get gt files and days
|
|
gt_files = np.sort([gt_f for gt_f in listdir(join(data_path, gt_folder)) if gt_f[-4:] == '.csv'])
|
|
cov_files = np.sort([cov_f for cov_f in listdir(join(data_path, cov_folder)) if cov_f[-4:] == '.csv'])
|
|
days = [d[:-4].split('_')[1] for d in gt_files]
|
|
|
|
# Load all gt poses
|
|
print('\nLoading days groundtruth poses...')
|
|
t0 = time.time()
|
|
gt_H = []
|
|
gt_t = []
|
|
for d, gt_f in enumerate(gt_files):
|
|
|
|
t1 = time.time()
|
|
|
|
gt_pkl_file = join(data_path, gt_folder, gt_f[:-4] + '.pkl')
|
|
if exists(gt_pkl_file):
|
|
# Read pkl
|
|
with open(gt_pkl_file, 'rb') as f:
|
|
day_gt_t, day_gt_H = pickle.load(f)
|
|
|
|
else:
|
|
# File paths
|
|
gt_csv = join(data_path, gt_folder, gt_f)
|
|
|
|
# Load gt
|
|
gt = np.loadtxt(gt_csv, delimiter=',')
|
|
|
|
# Convert gt to homogenous rotation/translation matrix
|
|
day_gt_t = gt[:, 0]
|
|
day_gt_H = ssc_to_homo(gt[:, 1:])
|
|
|
|
# Save pickle
|
|
with open(gt_pkl_file, 'wb') as f:
|
|
pickle.dump([day_gt_t, day_gt_H], f)
|
|
|
|
t2 = time.time()
|
|
print('{:s} {:d}/{:d} Done in {:.1f}s'.format(gt_f, d, gt_files.shape[0], t2 - t1))
|
|
|
|
gt_t += [day_gt_t]
|
|
gt_H += [day_gt_H]
|
|
|
|
if show_day_trajectory:
|
|
|
|
cov_csv = join(data_path, cov_folder, cov_files[d])
|
|
cov = np.loadtxt(cov_csv, delimiter=',')
|
|
t_cov = cov[:, 0]
|
|
t_cov_bool = np.logical_and(t_cov > np.min(day_gt_t), t_cov < np.max(day_gt_t))
|
|
t_cov = t_cov[t_cov_bool]
|
|
|
|
# Note: Interpolation is not needed, this is done as a convinience
|
|
interp = scipy.interpolate.interp1d(day_gt_t, day_gt_H[:, :3, 3], kind='nearest', axis=0)
|
|
node_poses = interp(t_cov)
|
|
|
|
plt.figure()
|
|
plt.scatter(day_gt_H[:, 1, 3], day_gt_H[:, 0, 3], 1, c=-day_gt_H[:, 2, 3], linewidth=0)
|
|
plt.scatter(node_poses[:, 1], node_poses[:, 0], 1, c=-node_poses[:, 2], linewidth=5)
|
|
plt.axis('equal')
|
|
plt.title('Ground Truth Position of Nodes in SLAM Graph')
|
|
plt.xlabel('East (m)')
|
|
plt.ylabel('North (m)')
|
|
plt.colorbar()
|
|
|
|
plt.show()
|
|
|
|
t2 = time.time()
|
|
print('Done in {:.1f}s\n'.format(t2 - t0))
|
|
|
|
# Out files
|
|
out_folder = join(data_path, 'day_ply')
|
|
if not exists(out_folder):
|
|
makedirs(out_folder)
|
|
|
|
# Focus on a particular point
|
|
p0 = np.array([-220, -527, 12])
|
|
center_radius = 10.0
|
|
point_radius = 50.0
|
|
|
|
# Loop on days
|
|
for d, day in enumerate(days):
|
|
|
|
#if day != '2012-02-05':
|
|
# continue
|
|
day_min_t = gt_t[d][0]
|
|
day_max_t = gt_t[d][-1]
|
|
|
|
frames_folder = join(data_path, 'frames_ply', day)
|
|
f_times = np.sort([float(f[:-4]) for f in listdir(frames_folder) if f[-4:] == '.ply'])
|
|
|
|
# If we want, load only SLAM nodes
|
|
if only_SLAM_nodes:
|
|
|
|
# Load node timestamps
|
|
cov_csv = join(data_path, cov_folder, cov_files[d])
|
|
cov = np.loadtxt(cov_csv, delimiter=',')
|
|
t_cov = cov[:, 0]
|
|
t_cov_bool = np.logical_and(t_cov > day_min_t, t_cov < day_max_t)
|
|
t_cov = t_cov[t_cov_bool]
|
|
|
|
# Find closest lidar frames
|
|
t_cov = np.expand_dims(t_cov, 1)
|
|
diffs = np.abs(t_cov - f_times)
|
|
inds = np.argmin(diffs, axis=1)
|
|
f_times = f_times[inds]
|
|
|
|
# Is this frame in gt
|
|
f_t_bool = np.logical_and(f_times > day_min_t, f_times < day_max_t)
|
|
f_times = f_times[f_t_bool]
|
|
|
|
# Interpolation gt poses to frame timestamps
|
|
interp = scipy.interpolate.interp1d(gt_t[d], gt_H[d], kind='nearest', axis=0)
|
|
frame_poses = interp(f_times)
|
|
|
|
N = len(f_times)
|
|
world_points = []
|
|
world_frames = []
|
|
world_frames_c = []
|
|
print('Reading', day, ' => ', N, 'files')
|
|
for f_i, f_t in enumerate(f_times):
|
|
|
|
t1 = time.time()
|
|
|
|
#########
|
|
# GT pose
|
|
#########
|
|
|
|
H = frame_poses[f_i].astype(np.float32)
|
|
# s = '\n'
|
|
# for cc in H:
|
|
# for c in cc:
|
|
# s += '{:5.2f} '.format(c)
|
|
# s += '\n'
|
|
# print(s)
|
|
|
|
#############
|
|
# Focus check
|
|
#############
|
|
|
|
if np.linalg.norm(H[:3, 3] - p0) > center_radius:
|
|
continue
|
|
|
|
###################################
|
|
# Local frame coordinates for debug
|
|
###################################
|
|
|
|
# Create artificial frames
|
|
x = np.linspace(0, 1, 50, dtype=np.float32)
|
|
points = np.hstack((np.vstack((x, x*0, x*0)), np.vstack((x*0, x, x*0)), np.vstack((x*0, x*0, x)))).T
|
|
colors = ((points > 0.1).astype(np.float32) * 255).astype(np.uint8)
|
|
|
|
hpoints = np.hstack((points, np.ones_like(points[:, :1])))
|
|
hpoints = np.matmul(hpoints, H.T)
|
|
hpoints[:, 3] *= 0
|
|
world_frames += [hpoints[:, :3]]
|
|
world_frames_c += [colors]
|
|
|
|
#######################
|
|
# Load velo point cloud
|
|
#######################
|
|
|
|
# Load frame ply file
|
|
f_name = '{:.0f}.ply'.format(f_t)
|
|
data = read_ply(join(frames_folder, f_name))
|
|
points = np.vstack((data['x'], data['y'], data['z'])).T
|
|
#intensity = data['intensity']
|
|
|
|
hpoints = np.hstack((points, np.ones_like(points[:, :1])))
|
|
hpoints = np.matmul(hpoints, H.T)
|
|
hpoints[:, 3] *= 0
|
|
hpoints[:, 3] += np.sqrt(f_t - f_times[0])
|
|
|
|
# focus check
|
|
focus_bool = np.linalg.norm(hpoints[:, :3] - p0, axis=1) < point_radius
|
|
hpoints = hpoints[focus_bool, :]
|
|
|
|
world_points += [hpoints]
|
|
|
|
t2 = time.time()
|
|
print('File {:s} {:d}/{:d} Done in {:.1f}s'.format(f_name, f_i, N, t2 - t1))
|
|
|
|
if len(world_points) < 2:
|
|
continue
|
|
|
|
world_points = np.vstack(world_points)
|
|
|
|
|
|
###### DEBUG
|
|
world_frames = np.vstack(world_frames)
|
|
world_frames_c = np.vstack(world_frames_c)
|
|
write_ply('testf.ply',
|
|
[world_frames, world_frames_c],
|
|
['x', 'y', 'z', 'red', 'green', 'blue'])
|
|
###### DEBUG
|
|
|
|
print(world_points.shape, world_points.dtype)
|
|
|
|
# Subsample merged frames
|
|
# world_points, features = grid_subsampling(world_points[:, :3],
|
|
# features=world_points[:, 3:],
|
|
# sampleDl=0.1)
|
|
features = world_points[:, 3:]
|
|
world_points = world_points[:, :3]
|
|
|
|
print(world_points.shape, world_points.dtype)
|
|
|
|
write_ply('test' + day + '.ply',
|
|
[world_points, features],
|
|
['x', 'y', 'z', 't'])
|
|
|
|
|
|
# Generate gt annotations
|
|
|
|
# Subsample day ply (for visualization)
|
|
|
|
# Save day ply
|
|
|
|
# a = 1/0
|