1536 lines
48 KiB
Python
1536 lines
48 KiB
Python
#
|
|
#
|
|
# 0=================================0
|
|
# | Kernel Point Convolutions |
|
|
# 0=================================0
|
|
#
|
|
#
|
|
# ----------------------------------------------------------------------------------------------------------------------
|
|
#
|
|
# Callable script to test any model on any dataset
|
|
#
|
|
# ----------------------------------------------------------------------------------------------------------------------
|
|
#
|
|
# Hugues THOMAS - 11/06/2018
|
|
#
|
|
|
|
|
|
# ----------------------------------------------------------------------------------------------------------------------
|
|
#
|
|
# Imports and global variables
|
|
# \**********************************/
|
|
#
|
|
|
|
# Common libs
|
|
import os
|
|
import torch
|
|
import numpy as np
|
|
import matplotlib.pyplot as plt
|
|
from os.path import isfile, join, exists
|
|
from os import listdir, remove, getcwd
|
|
from sklearn.metrics import confusion_matrix
|
|
import time
|
|
|
|
# My libs
|
|
from utils.config import Config
|
|
from utils.metrics import IoU_from_confusions, smooth_metrics, fast_confusion
|
|
from utils.ply import read_ply
|
|
|
|
# Datasets
|
|
from datasets.ModelNet40 import ModelNet40Dataset
|
|
from datasets.S3DIS import S3DISDataset
|
|
from datasets.SemanticKitti import SemanticKittiDataset
|
|
|
|
# ----------------------------------------------------------------------------------------------------------------------
|
|
#
|
|
# Utility functions
|
|
# \***********************/
|
|
#
|
|
|
|
|
|
def running_mean(signal, n, axis=0, stride=1):
|
|
signal = np.array(signal)
|
|
torch_conv = torch.nn.Conv1d(1, 1, kernel_size=2*n+1, stride=stride, bias=False)
|
|
torch_conv.weight.requires_grad_(False)
|
|
torch_conv.weight *= 0
|
|
torch_conv.weight += 1 / (2*n+1)
|
|
if signal.ndim == 1:
|
|
torch_signal = torch.from_numpy(signal.reshape([1, 1, -1]).astype(np.float32))
|
|
return torch_conv(torch_signal).squeeze().numpy()
|
|
|
|
elif signal.ndim == 2:
|
|
print('TODO implement with torch and stride here')
|
|
smoothed = np.empty(signal.shape)
|
|
if axis == 0:
|
|
for i, sig in enumerate(signal):
|
|
sig_sum = np.convolve(sig, np.ones((2*n+1,)), mode='same')
|
|
sig_num = np.convolve(sig*0+1, np.ones((2*n+1,)), mode='same')
|
|
smoothed[i, :] = sig_sum / sig_num
|
|
elif axis == 1:
|
|
for i, sig in enumerate(signal.T):
|
|
sig_sum = np.convolve(sig, np.ones((2*n+1,)), mode='same')
|
|
sig_num = np.convolve(sig*0+1, np.ones((2*n+1,)), mode='same')
|
|
smoothed[:, i] = sig_sum / sig_num
|
|
else:
|
|
print('wrong axis')
|
|
return smoothed
|
|
|
|
else:
|
|
print('wrong dimensions')
|
|
return None
|
|
|
|
|
|
def IoU_multi_metrics(all_IoUs, smooth_n):
|
|
|
|
# Get mean IoU for consecutive epochs to directly get a mean
|
|
all_mIoUs = [np.hstack([np.mean(obj_IoUs, axis=1) for obj_IoUs in epoch_IoUs]) for epoch_IoUs in all_IoUs]
|
|
smoothed_mIoUs = []
|
|
for epoch in range(len(all_mIoUs)):
|
|
i0 = max(epoch - smooth_n, 0)
|
|
i1 = min(epoch + smooth_n + 1, len(all_mIoUs))
|
|
smoothed_mIoUs += [np.mean(np.hstack(all_mIoUs[i0:i1]))]
|
|
|
|
# Get mean for each class
|
|
all_objs_mIoUs = [[np.mean(obj_IoUs, axis=1) for obj_IoUs in epoch_IoUs] for epoch_IoUs in all_IoUs]
|
|
smoothed_obj_mIoUs = []
|
|
for epoch in range(len(all_objs_mIoUs)):
|
|
i0 = max(epoch - smooth_n, 0)
|
|
i1 = min(epoch + smooth_n + 1, len(all_objs_mIoUs))
|
|
|
|
epoch_obj_mIoUs = []
|
|
for obj in range(len(all_objs_mIoUs[0])):
|
|
epoch_obj_mIoUs += [np.mean(np.hstack([objs_mIoUs[obj] for objs_mIoUs in all_objs_mIoUs[i0:i1]]))]
|
|
|
|
smoothed_obj_mIoUs += [epoch_obj_mIoUs]
|
|
|
|
return np.array(smoothed_mIoUs), np.array(smoothed_obj_mIoUs)
|
|
|
|
|
|
def IoU_class_metrics(all_IoUs, smooth_n):
|
|
|
|
# Get mean IoU per class for consecutive epochs to directly get a mean without further smoothing
|
|
smoothed_IoUs = []
|
|
for epoch in range(len(all_IoUs)):
|
|
i0 = max(epoch - smooth_n, 0)
|
|
i1 = min(epoch + smooth_n + 1, len(all_IoUs))
|
|
smoothed_IoUs += [np.mean(np.vstack(all_IoUs[i0:i1]), axis=0)]
|
|
smoothed_IoUs = np.vstack(smoothed_IoUs)
|
|
smoothed_mIoUs = np.mean(smoothed_IoUs, axis=1)
|
|
|
|
return smoothed_IoUs, smoothed_mIoUs
|
|
|
|
|
|
def load_confusions(filename, n_class):
|
|
|
|
with open(filename, 'r') as f:
|
|
lines = f.readlines()
|
|
|
|
confs = np.zeros((len(lines), n_class, n_class))
|
|
for i, line in enumerate(lines):
|
|
C = np.array([int(value) for value in line.split()])
|
|
confs[i, :, :] = C.reshape((n_class, n_class))
|
|
|
|
return confs
|
|
|
|
|
|
def load_training_results(path):
|
|
|
|
filename = join(path, 'training.txt')
|
|
with open(filename, 'r') as f:
|
|
lines = f.readlines()
|
|
|
|
epochs = []
|
|
steps = []
|
|
L_out = []
|
|
L_p = []
|
|
acc = []
|
|
t = []
|
|
for line in lines[1:]:
|
|
line_info = line.split()
|
|
if (len(line) > 0):
|
|
epochs += [int(line_info[0])]
|
|
steps += [int(line_info[1])]
|
|
L_out += [float(line_info[2])]
|
|
L_p += [float(line_info[3])]
|
|
acc += [float(line_info[4])]
|
|
t += [float(line_info[5])]
|
|
else:
|
|
break
|
|
|
|
return epochs, steps, L_out, L_p, acc, t
|
|
|
|
|
|
def load_single_IoU(filename, n_parts):
|
|
|
|
with open(filename, 'r') as f:
|
|
lines = f.readlines()
|
|
|
|
# Load all IoUs
|
|
all_IoUs = []
|
|
for i, line in enumerate(lines):
|
|
all_IoUs += [np.reshape([float(IoU) for IoU in line.split()], [-1, n_parts])]
|
|
return all_IoUs
|
|
|
|
|
|
def load_snap_clouds(path, dataset, only_last=False):
|
|
|
|
cloud_folders = np.array([join(path, f) for f in listdir(path) if f.startswith('val_preds')])
|
|
cloud_epochs = np.array([int(f.split('_')[-1]) for f in cloud_folders])
|
|
epoch_order = np.argsort(cloud_epochs)
|
|
cloud_epochs = cloud_epochs[epoch_order]
|
|
cloud_folders = cloud_folders[epoch_order]
|
|
|
|
Confs = np.zeros((len(cloud_epochs), dataset.num_classes, dataset.num_classes), dtype=np.int32)
|
|
for c_i, cloud_folder in enumerate(cloud_folders):
|
|
if only_last and c_i < len(cloud_epochs) - 1:
|
|
continue
|
|
|
|
# Load confusion if previously saved
|
|
conf_file = join(cloud_folder, 'conf.txt')
|
|
if isfile(conf_file):
|
|
Confs[c_i] += np.loadtxt(conf_file, dtype=np.int32)
|
|
|
|
else:
|
|
for f in listdir(cloud_folder):
|
|
if f.endswith('.ply') and not f.endswith('sub.ply'):
|
|
data = read_ply(join(cloud_folder, f))
|
|
labels = data['class']
|
|
preds = data['preds']
|
|
Confs[c_i] += fast_confusion(labels, preds, dataset.label_values).astype(np.int32)
|
|
|
|
np.savetxt(conf_file, Confs[c_i], '%12d')
|
|
|
|
# Erase ply to save disk memory
|
|
if c_i < len(cloud_folders) - 1:
|
|
for f in listdir(cloud_folder):
|
|
if f.endswith('.ply'):
|
|
remove(join(cloud_folder, f))
|
|
|
|
# Remove ignored labels from confusions
|
|
for l_ind, label_value in reversed(list(enumerate(dataset.label_values))):
|
|
if label_value in dataset.ignored_labels:
|
|
Confs = np.delete(Confs, l_ind, axis=1)
|
|
Confs = np.delete(Confs, l_ind, axis=2)
|
|
|
|
return cloud_epochs, IoU_from_confusions(Confs)
|
|
|
|
|
|
def load_multi_snap_clouds(path, dataset, file_i, only_last=False):
|
|
|
|
cloud_folders = np.array([join(path, f) for f in listdir(path) if f.startswith('val_preds')])
|
|
cloud_epochs = np.array([int(f.split('_')[-1]) for f in cloud_folders])
|
|
epoch_order = np.argsort(cloud_epochs)
|
|
cloud_epochs = cloud_epochs[epoch_order]
|
|
cloud_folders = cloud_folders[epoch_order]
|
|
|
|
if len(cloud_folders) > 0:
|
|
dataset_folders = [f for f in listdir(cloud_folders[0]) if dataset.name in f]
|
|
cloud_folders = [join(f, dataset_folders[file_i]) for f in cloud_folders]
|
|
|
|
Confs = np.zeros((len(cloud_epochs), dataset.num_classes, dataset.num_classes), dtype=np.int32)
|
|
for c_i, cloud_folder in enumerate(cloud_folders):
|
|
if only_last and c_i < len(cloud_epochs) - 1:
|
|
continue
|
|
|
|
# Load confusion if previously saved
|
|
conf_file = join(cloud_folder, 'conf_{:s}.txt'.format(dataset.name))
|
|
if isfile(conf_file):
|
|
Confs[c_i] += np.loadtxt(conf_file, dtype=np.int32)
|
|
|
|
else:
|
|
for f in listdir(cloud_folder):
|
|
if f.endswith('.ply') and not f.endswith('sub.ply'):
|
|
if np.any([cloud_path.endswith(f) for cloud_path in dataset.files]):
|
|
data = read_ply(join(cloud_folder, f))
|
|
labels = data['class']
|
|
preds = data['preds']
|
|
Confs[c_i] += confusion_matrix(labels, preds, dataset.label_values).astype(np.int32)
|
|
|
|
np.savetxt(conf_file, Confs[c_i], '%12d')
|
|
|
|
# Erase ply to save disk memory
|
|
if c_i < len(cloud_folders) - 1:
|
|
for f in listdir(cloud_folder):
|
|
if f.endswith('.ply'):
|
|
remove(join(cloud_folder, f))
|
|
|
|
# Remove ignored labels from confusions
|
|
for l_ind, label_value in reversed(list(enumerate(dataset.label_values))):
|
|
if label_value in dataset.ignored_labels:
|
|
Confs = np.delete(Confs, l_ind, axis=1)
|
|
Confs = np.delete(Confs, l_ind, axis=2)
|
|
|
|
return cloud_epochs, IoU_from_confusions(Confs)
|
|
|
|
|
|
def load_multi_IoU(filename, n_parts):
|
|
|
|
with open(filename, 'r') as f:
|
|
lines = f.readlines()
|
|
|
|
# Load all IoUs
|
|
all_IoUs = []
|
|
for i, line in enumerate(lines):
|
|
obj_IoUs = [[float(IoU) for IoU in s.split()] for s in line.split('/')]
|
|
obj_IoUs = [np.reshape(IoUs, [-1, n_parts[obj]]) for obj, IoUs in enumerate(obj_IoUs)]
|
|
all_IoUs += [obj_IoUs]
|
|
return all_IoUs
|
|
|
|
|
|
def compare_trainings(list_of_paths, list_of_labels=None):
|
|
|
|
# Parameters
|
|
# **********
|
|
|
|
plot_lr = False
|
|
smooth_epochs = 0.5
|
|
stride = 2
|
|
|
|
if list_of_labels is None:
|
|
list_of_labels = [str(i) for i in range(len(list_of_paths))]
|
|
|
|
# Read Training Logs
|
|
# ******************
|
|
|
|
all_epochs = []
|
|
all_loss = []
|
|
all_lr = []
|
|
all_times = []
|
|
all_RAMs = []
|
|
|
|
for path in list_of_paths:
|
|
|
|
print(path)
|
|
|
|
if ('val_IoUs.txt' in [f for f in listdir(path)]) or ('val_confs.txt' in [f for f in listdir(path)]):
|
|
config = Config()
|
|
config.load(path)
|
|
else:
|
|
continue
|
|
|
|
# Load results
|
|
epochs, steps, L_out, L_p, acc, t = load_training_results(path)
|
|
epochs = np.array(epochs, dtype=np.int32)
|
|
epochs_d = np.array(epochs, dtype=np.float32)
|
|
steps = np.array(steps, dtype=np.float32)
|
|
|
|
# Compute number of steps per epoch
|
|
max_e = np.max(epochs)
|
|
first_e = np.min(epochs)
|
|
epoch_n = []
|
|
for i in range(first_e, max_e):
|
|
bool0 = epochs == i
|
|
e_n = np.sum(bool0)
|
|
epoch_n.append(e_n)
|
|
epochs_d[bool0] += steps[bool0] / e_n
|
|
smooth_n = int(np.mean(epoch_n) * smooth_epochs)
|
|
smooth_loss = running_mean(L_out, smooth_n, stride=stride)
|
|
all_loss += [smooth_loss]
|
|
all_epochs += [epochs_d[smooth_n:-smooth_n:stride]]
|
|
all_times += [t[smooth_n:-smooth_n:stride]]
|
|
|
|
# Learning rate
|
|
if plot_lr:
|
|
lr_decay_v = np.array([lr_d for ep, lr_d in config.lr_decays.items()])
|
|
lr_decay_e = np.array([ep for ep, lr_d in config.lr_decays.items()])
|
|
max_e = max(np.max(all_epochs[-1]) + 1, np.max(lr_decay_e) + 1)
|
|
lr_decays = np.ones(int(np.ceil(max_e)), dtype=np.float32)
|
|
lr_decays[0] = float(config.learning_rate)
|
|
lr_decays[lr_decay_e] = lr_decay_v
|
|
lr = np.cumprod(lr_decays)
|
|
all_lr += [lr[np.floor(all_epochs[-1]).astype(np.int32)]]
|
|
|
|
# Plots learning rate
|
|
# *******************
|
|
|
|
|
|
if plot_lr:
|
|
# Figure
|
|
fig = plt.figure('lr')
|
|
for i, label in enumerate(list_of_labels):
|
|
plt.plot(all_epochs[i], all_lr[i], linewidth=1, label=label)
|
|
|
|
# Set names for axes
|
|
plt.xlabel('epochs')
|
|
plt.ylabel('lr')
|
|
plt.yscale('log')
|
|
|
|
# Display legends and title
|
|
plt.legend(loc=1)
|
|
|
|
# Customize the graph
|
|
ax = fig.gca()
|
|
ax.grid(linestyle='-.', which='both')
|
|
# ax.set_yticks(np.arange(0.8, 1.02, 0.02))
|
|
|
|
# Plots loss
|
|
# **********
|
|
|
|
# Figure
|
|
fig = plt.figure('loss')
|
|
for i, label in enumerate(list_of_labels):
|
|
plt.plot(all_epochs[i], all_loss[i], linewidth=1, label=label)
|
|
|
|
# Set names for axes
|
|
plt.xlabel('epochs')
|
|
plt.ylabel('loss')
|
|
plt.yscale('log')
|
|
|
|
# Display legends and title
|
|
plt.legend(loc=1)
|
|
plt.title('Losses compare')
|
|
|
|
# Customize the graph
|
|
ax = fig.gca()
|
|
ax.grid(linestyle='-.', which='both')
|
|
# ax.set_yticks(np.arange(0.8, 1.02, 0.02))
|
|
|
|
# Plot Times
|
|
# **********
|
|
|
|
# Figure
|
|
fig = plt.figure('time')
|
|
for i, label in enumerate(list_of_labels):
|
|
plt.plot(all_epochs[i], np.array(all_times[i]) / 3600, linewidth=1, label=label)
|
|
|
|
# Set names for axes
|
|
plt.xlabel('epochs')
|
|
plt.ylabel('time')
|
|
# plt.yscale('log')
|
|
|
|
# Display legends and title
|
|
plt.legend(loc=0)
|
|
|
|
# Customize the graph
|
|
ax = fig.gca()
|
|
ax.grid(linestyle='-.', which='both')
|
|
# ax.set_yticks(np.arange(0.8, 1.02, 0.02))
|
|
|
|
# Show all
|
|
plt.show()
|
|
|
|
|
|
def compare_convergences_multisegment(list_of_paths, list_of_labels=None):
|
|
|
|
# Parameters
|
|
# **********
|
|
|
|
steps_per_epoch = 0
|
|
smooth_n = 5
|
|
|
|
if list_of_labels is None:
|
|
list_of_labels = [str(i) for i in range(len(list_of_paths))]
|
|
|
|
# Read Logs
|
|
# *********
|
|
|
|
all_pred_epochs = []
|
|
all_instances_mIoUs = []
|
|
all_objs_mIoUs = []
|
|
all_objs_IoUs = []
|
|
all_parts = []
|
|
|
|
obj_list = ['Air', 'Bag', 'Cap', 'Car', 'Cha', 'Ear', 'Gui', 'Kni',
|
|
'Lam', 'Lap', 'Mot', 'Mug', 'Pis', 'Roc', 'Ska', 'Tab']
|
|
print('Objs | Inst | Air Bag Cap Car Cha Ear Gui Kni Lam Lap Mot Mug Pis Roc Ska Tab')
|
|
print('-----|------|--------------------------------------------------------------------------------')
|
|
for path in list_of_paths:
|
|
|
|
# Load parameters
|
|
config = Config()
|
|
config.load(path)
|
|
|
|
# Get the number of classes
|
|
n_parts = [4, 2, 2, 4, 4, 3, 3, 2, 4, 2, 6, 2, 3, 3, 3, 3]
|
|
part = config.dataset.split('_')[-1]
|
|
|
|
# Get validation confusions
|
|
file = join(path, 'val_IoUs.txt')
|
|
val_IoUs = load_multi_IoU(file, n_parts)
|
|
|
|
file = join(path, 'vote_IoUs.txt')
|
|
vote_IoUs = load_multi_IoU(file, n_parts)
|
|
|
|
#print(len(val_IoUs[0]))
|
|
#print(val_IoUs[0][0].shape)
|
|
|
|
# Get mean IoU
|
|
#instances_mIoUs, objs_mIoUs = IoU_multi_metrics(val_IoUs, smooth_n)
|
|
|
|
# Get mean IoU
|
|
instances_mIoUs, objs_mIoUs = IoU_multi_metrics(vote_IoUs, smooth_n)
|
|
|
|
# Aggregate results
|
|
all_pred_epochs += [np.array([i for i in range(len(val_IoUs))])]
|
|
all_instances_mIoUs += [instances_mIoUs]
|
|
all_objs_IoUs += [objs_mIoUs]
|
|
all_objs_mIoUs += [np.mean(objs_mIoUs, axis=1)]
|
|
|
|
if part == 'multi':
|
|
s = '{:4.1f} | {:4.1f} | '.format(100 * np.mean(objs_mIoUs[-1]), 100 * instances_mIoUs[-1])
|
|
for obj_mIoU in objs_mIoUs[-1]:
|
|
s += '{:4.1f} '.format(100 * obj_mIoU)
|
|
print(s)
|
|
else:
|
|
s = ' -- | -- | '
|
|
for obj_name in obj_list:
|
|
if part.startswith(obj_name):
|
|
s += '{:4.1f} '.format(100 * instances_mIoUs[-1])
|
|
else:
|
|
s += ' -- '.format(100 * instances_mIoUs[-1])
|
|
print(s)
|
|
all_parts += [part]
|
|
|
|
# Plots
|
|
# *****
|
|
|
|
if 'multi' in all_parts:
|
|
|
|
# Figure
|
|
fig = plt.figure('Instances mIoU')
|
|
for i, label in enumerate(list_of_labels):
|
|
if all_parts[i] == 'multi':
|
|
plt.plot(all_pred_epochs[i], all_instances_mIoUs[i], linewidth=1, label=label)
|
|
plt.xlabel('epochs')
|
|
plt.ylabel('IoU')
|
|
|
|
# Set limits for y axis
|
|
#plt.ylim(0.55, 0.95)
|
|
|
|
# Display legends and title
|
|
plt.legend(loc=4)
|
|
|
|
# Customize the graph
|
|
ax = fig.gca()
|
|
ax.grid(linestyle='-.', which='both')
|
|
#ax.set_yticks(np.arange(0.8, 1.02, 0.02))
|
|
|
|
# Figure
|
|
fig = plt.figure('mean of categories mIoU')
|
|
for i, label in enumerate(list_of_labels):
|
|
if all_parts[i] == 'multi':
|
|
plt.plot(all_pred_epochs[i], all_objs_mIoUs[i], linewidth=1, label=label)
|
|
plt.xlabel('epochs')
|
|
plt.ylabel('IoU')
|
|
|
|
# Set limits for y axis
|
|
#plt.ylim(0.8, 1)
|
|
|
|
# Display legends and title
|
|
plt.legend(loc=4)
|
|
|
|
# Customize the graph
|
|
ax = fig.gca()
|
|
ax.grid(linestyle='-.', which='both')
|
|
#ax.set_yticks(np.arange(0.8, 1.02, 0.02))
|
|
|
|
for obj_i, obj_name in enumerate(obj_list):
|
|
if np.any([part.startswith(obj_name) for part in all_parts]):
|
|
# Figure
|
|
fig = plt.figure(obj_name + ' mIoU')
|
|
for i, label in enumerate(list_of_labels):
|
|
if all_parts[i] == 'multi':
|
|
plt.plot(all_pred_epochs[i], all_objs_IoUs[i][:, obj_i], linewidth=1, label=label)
|
|
elif all_parts[i].startswith(obj_name):
|
|
plt.plot(all_pred_epochs[i], all_objs_mIoUs[i], linewidth=1, label=label)
|
|
plt.xlabel('epochs')
|
|
plt.ylabel('IoU')
|
|
|
|
# Set limits for y axis
|
|
#plt.ylim(0.8, 1)
|
|
|
|
# Display legends and title
|
|
plt.legend(loc=4)
|
|
|
|
# Customize the graph
|
|
ax = fig.gca()
|
|
ax.grid(linestyle='-.', which='both')
|
|
#ax.set_yticks(np.arange(0.8, 1.02, 0.02))
|
|
|
|
|
|
|
|
# Show all
|
|
plt.show()
|
|
|
|
|
|
def compare_convergences_segment(dataset, list_of_paths, list_of_names=None):
|
|
|
|
# Parameters
|
|
# **********
|
|
|
|
smooth_n = 10
|
|
|
|
if list_of_names is None:
|
|
list_of_names = [str(i) for i in range(len(list_of_paths))]
|
|
|
|
# Read Logs
|
|
# *********
|
|
|
|
all_pred_epochs = []
|
|
all_mIoUs = []
|
|
all_class_IoUs = []
|
|
all_snap_epochs = []
|
|
all_snap_IoUs = []
|
|
|
|
# Load parameters
|
|
config = Config()
|
|
config.load(list_of_paths[0])
|
|
|
|
class_list = [dataset.label_to_names[label] for label in dataset.label_values
|
|
if label not in dataset.ignored_labels]
|
|
|
|
s = '{:^10}|'.format('mean')
|
|
for c in class_list:
|
|
s += '{:^10}'.format(c)
|
|
print(s)
|
|
print(10*'-' + '|' + 10*config.num_classes*'-')
|
|
for path in list_of_paths:
|
|
|
|
# Get validation IoUs
|
|
file = join(path, 'val_IoUs.txt')
|
|
val_IoUs = load_single_IoU(file, config.num_classes)
|
|
|
|
# Get mean IoU
|
|
class_IoUs, mIoUs = IoU_class_metrics(val_IoUs, smooth_n)
|
|
|
|
# Aggregate results
|
|
all_pred_epochs += [np.array([i for i in range(len(val_IoUs))])]
|
|
all_mIoUs += [mIoUs]
|
|
all_class_IoUs += [class_IoUs]
|
|
|
|
s = '{:^10.1f}|'.format(100*mIoUs[-1])
|
|
for IoU in class_IoUs[-1]:
|
|
s += '{:^10.1f}'.format(100*IoU)
|
|
print(s)
|
|
|
|
# Get optional full validation on clouds
|
|
snap_epochs, snap_IoUs = load_snap_clouds(path, dataset)
|
|
all_snap_epochs += [snap_epochs]
|
|
all_snap_IoUs += [snap_IoUs]
|
|
|
|
print(10*'-' + '|' + 10*config.num_classes*'-')
|
|
for snap_IoUs in all_snap_IoUs:
|
|
if len(snap_IoUs) > 0:
|
|
s = '{:^10.1f}|'.format(100*np.mean(snap_IoUs[-1]))
|
|
for IoU in snap_IoUs[-1]:
|
|
s += '{:^10.1f}'.format(100*IoU)
|
|
else:
|
|
s = '{:^10s}'.format('-')
|
|
for _ in range(config.num_classes):
|
|
s += '{:^10s}'.format('-')
|
|
print(s)
|
|
|
|
# Plots
|
|
# *****
|
|
|
|
# Figure
|
|
fig = plt.figure('mIoUs')
|
|
for i, name in enumerate(list_of_names):
|
|
p = plt.plot(all_pred_epochs[i], all_mIoUs[i], '--', linewidth=1, label=name)
|
|
plt.plot(all_snap_epochs[i], np.mean(all_snap_IoUs[i], axis=1), linewidth=1, color=p[-1].get_color())
|
|
plt.xlabel('epochs')
|
|
plt.ylabel('IoU')
|
|
|
|
# Set limits for y axis
|
|
#plt.ylim(0.55, 0.95)
|
|
|
|
# Display legends and title
|
|
plt.legend(loc=4)
|
|
|
|
# Customize the graph
|
|
ax = fig.gca()
|
|
ax.grid(linestyle='-.', which='both')
|
|
#ax.set_yticks(np.arange(0.8, 1.02, 0.02))
|
|
|
|
displayed_classes = [0, 1, 2, 3, 4, 5, 6, 7]
|
|
displayed_classes = []
|
|
for c_i, c_name in enumerate(class_list):
|
|
if c_i in displayed_classes:
|
|
|
|
# Figure
|
|
fig = plt.figure(c_name + ' IoU')
|
|
for i, name in enumerate(list_of_names):
|
|
plt.plot(all_pred_epochs[i], all_class_IoUs[i][:, c_i], linewidth=1, label=name)
|
|
plt.xlabel('epochs')
|
|
plt.ylabel('IoU')
|
|
|
|
# Set limits for y axis
|
|
#plt.ylim(0.8, 1)
|
|
|
|
# Display legends and title
|
|
plt.legend(loc=4)
|
|
|
|
# Customize the graph
|
|
ax = fig.gca()
|
|
ax.grid(linestyle='-.', which='both')
|
|
#ax.set_yticks(np.arange(0.8, 1.02, 0.02))
|
|
|
|
# Show all
|
|
plt.show()
|
|
|
|
|
|
def compare_convergences_classif(list_of_paths, list_of_labels=None):
|
|
|
|
# Parameters
|
|
# **********
|
|
|
|
steps_per_epoch = 0
|
|
smooth_n = 12
|
|
|
|
if list_of_labels is None:
|
|
list_of_labels = [str(i) for i in range(len(list_of_paths))]
|
|
|
|
# Read Logs
|
|
# *********
|
|
|
|
all_pred_epochs = []
|
|
all_val_OA = []
|
|
all_train_OA = []
|
|
all_vote_OA = []
|
|
all_vote_confs = []
|
|
|
|
|
|
for path in list_of_paths:
|
|
|
|
# Load parameters
|
|
config = Config()
|
|
config.load(list_of_paths[0])
|
|
|
|
# Get the number of classes
|
|
n_class = config.num_classes
|
|
|
|
# Load epochs
|
|
epochs, _, _, _, _, _ = load_training_results(path)
|
|
first_e = np.min(epochs)
|
|
|
|
# Get validation confusions
|
|
file = join(path, 'val_confs.txt')
|
|
val_C1 = load_confusions(file, n_class)
|
|
val_PRE, val_REC, val_F1, val_IoU, val_ACC = smooth_metrics(val_C1, smooth_n=smooth_n)
|
|
|
|
# Get vote confusions
|
|
file = join(path, 'vote_confs.txt')
|
|
if exists(file):
|
|
vote_C2 = load_confusions(file, n_class)
|
|
vote_PRE, vote_REC, vote_F1, vote_IoU, vote_ACC = smooth_metrics(vote_C2, smooth_n=2)
|
|
else:
|
|
vote_C2 = val_C1
|
|
vote_PRE, vote_REC, vote_F1, vote_IoU, vote_ACC = (val_PRE, val_REC, val_F1, val_IoU, val_ACC)
|
|
|
|
# Aggregate results
|
|
all_pred_epochs += [np.array([i+first_e for i in range(len(val_ACC))])]
|
|
all_val_OA += [val_ACC]
|
|
all_vote_OA += [vote_ACC]
|
|
all_vote_confs += [vote_C2]
|
|
|
|
print()
|
|
|
|
# Best scores
|
|
# ***********
|
|
|
|
for i, label in enumerate(list_of_labels):
|
|
|
|
print('\n' + label + '\n' + '*' * len(label) + '\n')
|
|
print(list_of_paths[i])
|
|
|
|
best_epoch = np.argmax(all_vote_OA[i])
|
|
print('Best Accuracy : {:.1f} % (epoch {:d})'.format(100 * all_vote_OA[i][best_epoch], best_epoch))
|
|
|
|
confs = all_vote_confs[i]
|
|
|
|
"""
|
|
s = ''
|
|
for cc in confs[best_epoch]:
|
|
for c in cc:
|
|
s += '{:.0f} '.format(c)
|
|
s += '\n'
|
|
print(s)
|
|
"""
|
|
|
|
TP_plus_FN = np.sum(confs, axis=-1, keepdims=True)
|
|
class_avg_confs = confs.astype(np.float32) / TP_plus_FN.astype(np.float32)
|
|
diags = np.diagonal(class_avg_confs, axis1=-2, axis2=-1)
|
|
class_avg_ACC = np.sum(diags, axis=-1) / np.sum(class_avg_confs, axis=(-1, -2))
|
|
|
|
print('Corresponding mAcc : {:.1f} %'.format(100 * class_avg_ACC[best_epoch]))
|
|
|
|
# Plots
|
|
# *****
|
|
|
|
for fig_name, OA in zip(['Validation', 'Vote'], [all_val_OA, all_vote_OA]):
|
|
|
|
# Figure
|
|
fig = plt.figure(fig_name)
|
|
for i, label in enumerate(list_of_labels):
|
|
plt.plot(all_pred_epochs[i], OA[i], linewidth=1, label=label)
|
|
plt.xlabel('epochs')
|
|
plt.ylabel(fig_name + ' Accuracy')
|
|
|
|
# Set limits for y axis
|
|
#plt.ylim(0.55, 0.95)
|
|
|
|
# Display legends and title
|
|
plt.legend(loc=4)
|
|
|
|
# Customize the graph
|
|
ax = fig.gca()
|
|
ax.grid(linestyle='-.', which='both')
|
|
#ax.set_yticks(np.arange(0.8, 1.02, 0.02))
|
|
|
|
#for i, label in enumerate(list_of_labels):
|
|
# print(label, np.max(all_train_OA[i]), np.max(all_val_OA[i]))
|
|
|
|
# Show all
|
|
plt.show()
|
|
|
|
|
|
def compare_convergences_multicloud(list_of_paths, multi, multi_datasets, list_of_names=None):
|
|
|
|
# Parameters
|
|
# **********
|
|
|
|
smooth_n = 10
|
|
|
|
if list_of_names is None:
|
|
list_of_names = [str(i) for i in range(len(list_of_paths))]
|
|
|
|
|
|
# Loop on all datasets:
|
|
for plot_dataset in multi_datasets:
|
|
print('\n')
|
|
print(plot_dataset)
|
|
print('*'*len(plot_dataset))
|
|
print()
|
|
|
|
# Load dataset parameters
|
|
if plot_dataset.startswith('S3DIS'):
|
|
dataset = S3DISDataset()
|
|
elif plot_dataset.startswith('Scann'):
|
|
dataset = ScannetDataset()
|
|
elif plot_dataset.startswith('Seman'):
|
|
dataset = Semantic3DDataset()
|
|
elif plot_dataset.startswith('NPM3D'):
|
|
dataset = NPM3DDataset()
|
|
else:
|
|
raise ValueError('Unsupported dataset : ' + plot_dataset)
|
|
|
|
# Read Logs
|
|
# *********
|
|
|
|
all_pred_epochs = []
|
|
all_mIoUs = []
|
|
all_class_IoUs = []
|
|
all_snap_epochs = []
|
|
all_snap_IoUs = []
|
|
all_names = []
|
|
|
|
class_list = [dataset.label_to_names[label] for label in dataset.label_values
|
|
if label not in dataset.ignored_labels]
|
|
|
|
s = '{:^10}|'.format('mean')
|
|
for c in class_list:
|
|
s += '{:^10}'.format(c)
|
|
print(s)
|
|
print(10*'-' + '|' + 10*dataset.num_classes*'-')
|
|
for log_i, (path, is_multi) in enumerate(zip(list_of_paths, multi)):
|
|
|
|
n_c = None
|
|
if is_multi:
|
|
config = MultiConfig()
|
|
config.load(path)
|
|
if plot_dataset in config.datasets:
|
|
val_IoU_files = []
|
|
for d_i in np.where(np.array(config.datasets) == plot_dataset)[0]:
|
|
n_c = config.num_classes[d_i]
|
|
val_IoU_files.append(join(path, 'val_IoUs_{:d}_{:s}.txt'.format(d_i, plot_dataset)))
|
|
else:
|
|
continue
|
|
else:
|
|
config = Config()
|
|
config.load(path)
|
|
if plot_dataset == config.dataset:
|
|
n_c = config.num_classes
|
|
val_IoU_files = [join(path, 'val_IoUs.txt')]
|
|
else:
|
|
continue
|
|
|
|
for file_i, file in enumerate(val_IoU_files):
|
|
|
|
# Load validation IoUs
|
|
val_IoUs = load_single_IoU(file, n_c)
|
|
|
|
# Get mean IoU
|
|
class_IoUs, mIoUs = IoU_class_metrics(val_IoUs, smooth_n)
|
|
|
|
# Aggregate results
|
|
all_pred_epochs += [np.array([i for i in range(len(val_IoUs))])]
|
|
all_mIoUs += [mIoUs]
|
|
all_class_IoUs += [class_IoUs]
|
|
all_names += [list_of_names[log_i]+'_{:d}'.format(file_i+1)]
|
|
|
|
s = '{:^10.1f}|'.format(100*mIoUs[-1])
|
|
for IoU in class_IoUs[-1]:
|
|
s += '{:^10.1f}'.format(100*IoU)
|
|
print(s)
|
|
|
|
# Get optional full validation on clouds
|
|
if is_multi:
|
|
snap_epochs, snap_IoUs = load_multi_snap_clouds(path, dataset, file_i)
|
|
else:
|
|
snap_epochs, snap_IoUs = load_snap_clouds(path, dataset)
|
|
all_snap_epochs += [snap_epochs]
|
|
all_snap_IoUs += [snap_IoUs]
|
|
|
|
print(10*'-' + '|' + 10*dataset.num_classes*'-')
|
|
for snap_IoUs in all_snap_IoUs:
|
|
if len(snap_IoUs) > 0:
|
|
s = '{:^10.1f}|'.format(100*np.mean(snap_IoUs[-1]))
|
|
for IoU in snap_IoUs[-1]:
|
|
s += '{:^10.1f}'.format(100*IoU)
|
|
else:
|
|
s = '{:^10s}'.format('-')
|
|
for _ in range(dataset.num_classes):
|
|
s += '{:^10s}'.format('-')
|
|
print(s)
|
|
|
|
# Plots
|
|
# *****
|
|
|
|
# Figure
|
|
fig = plt.figure('mIoUs')
|
|
for i, name in enumerate(all_names):
|
|
p = plt.plot(all_pred_epochs[i], all_mIoUs[i], '--', linewidth=1, label=name)
|
|
plt.plot(all_snap_epochs[i], np.mean(all_snap_IoUs[i], axis=1), linewidth=1, color=p[-1].get_color())
|
|
|
|
plt.title(plot_dataset)
|
|
plt.xlabel('epochs')
|
|
plt.ylabel('IoU')
|
|
|
|
# Set limits for y axis
|
|
#plt.ylim(0.55, 0.95)
|
|
|
|
# Display legends and title
|
|
plt.legend(loc=4)
|
|
|
|
# Customize the graph
|
|
ax = fig.gca()
|
|
ax.grid(linestyle='-.', which='both')
|
|
#ax.set_yticks(np.arange(0.8, 1.02, 0.02))
|
|
|
|
displayed_classes = [0, 1, 2, 3, 4, 5, 6, 7]
|
|
displayed_classes = []
|
|
for c_i, c_name in enumerate(class_list):
|
|
if c_i in displayed_classes:
|
|
|
|
# Figure
|
|
fig = plt.figure(c_name + ' IoU')
|
|
for i, name in enumerate(list_of_names):
|
|
plt.plot(all_pred_epochs[i], all_class_IoUs[i][:, c_i], linewidth=1, label=name)
|
|
plt.xlabel('epochs')
|
|
plt.ylabel('IoU')
|
|
|
|
# Set limits for y axis
|
|
#plt.ylim(0.8, 1)
|
|
|
|
# Display legends and title
|
|
plt.legend(loc=4)
|
|
|
|
# Customize the graph
|
|
ax = fig.gca()
|
|
ax.grid(linestyle='-.', which='both')
|
|
#ax.set_yticks(np.arange(0.8, 1.02, 0.02))
|
|
|
|
|
|
|
|
# Show all
|
|
plt.show()
|
|
|
|
|
|
def compare_convergences_SLAM(dataset, list_of_paths, list_of_names=None):
|
|
|
|
# Parameters
|
|
# **********
|
|
|
|
smooth_n = 10
|
|
|
|
if list_of_names is None:
|
|
list_of_names = [str(i) for i in range(len(list_of_paths))]
|
|
|
|
# Read Logs
|
|
# *********
|
|
|
|
all_pred_epochs = []
|
|
all_val_mIoUs = []
|
|
all_val_class_IoUs = []
|
|
all_subpart_mIoUs = []
|
|
all_subpart_class_IoUs = []
|
|
|
|
# Load parameters
|
|
config = Config()
|
|
config.load(list_of_paths[0])
|
|
|
|
class_list = [dataset.label_to_names[label] for label in dataset.label_values
|
|
if label not in dataset.ignored_labels]
|
|
|
|
s = '{:^6}|'.format('mean')
|
|
for c in class_list:
|
|
s += '{:^6}'.format(c[:4])
|
|
print(s)
|
|
print(6*'-' + '|' + 6*config.num_classes*'-')
|
|
for path in list_of_paths:
|
|
|
|
# Get validation IoUs
|
|
nc_model = dataset.num_classes - len(dataset.ignored_labels)
|
|
file = join(path, 'val_IoUs.txt')
|
|
val_IoUs = load_single_IoU(file, nc_model)
|
|
|
|
# Get Subpart IoUs
|
|
file = join(path, 'subpart_IoUs.txt')
|
|
subpart_IoUs = load_single_IoU(file, nc_model)
|
|
|
|
# Get mean IoU
|
|
val_class_IoUs, val_mIoUs = IoU_class_metrics(val_IoUs, smooth_n)
|
|
subpart_class_IoUs, subpart_mIoUs = IoU_class_metrics(subpart_IoUs, smooth_n)
|
|
|
|
# Aggregate results
|
|
all_pred_epochs += [np.array([i for i in range(len(val_IoUs))])]
|
|
all_val_mIoUs += [val_mIoUs]
|
|
all_val_class_IoUs += [val_class_IoUs]
|
|
all_subpart_mIoUs += [subpart_mIoUs]
|
|
all_subpart_class_IoUs += [subpart_class_IoUs]
|
|
|
|
s = '{:^6.1f}|'.format(100*subpart_mIoUs[-1])
|
|
for IoU in subpart_class_IoUs[-1]:
|
|
s += '{:^6.1f}'.format(100*IoU)
|
|
print(s)
|
|
|
|
print(6*'-' + '|' + 6*config.num_classes*'-')
|
|
for snap_IoUs in all_val_class_IoUs:
|
|
if len(snap_IoUs) > 0:
|
|
s = '{:^6.1f}|'.format(100*np.mean(snap_IoUs[-1]))
|
|
for IoU in snap_IoUs[-1]:
|
|
s += '{:^6.1f}'.format(100*IoU)
|
|
else:
|
|
s = '{:^6s}'.format('-')
|
|
for _ in range(config.num_classes):
|
|
s += '{:^6s}'.format('-')
|
|
print(s)
|
|
|
|
# Plots
|
|
# *****
|
|
|
|
# Figure
|
|
fig = plt.figure('mIoUs')
|
|
for i, name in enumerate(list_of_names):
|
|
p = plt.plot(all_pred_epochs[i], all_subpart_mIoUs[i], '--', linewidth=1, label=name)
|
|
plt.plot(all_pred_epochs[i], all_val_mIoUs[i], linewidth=1, color=p[-1].get_color())
|
|
plt.xlabel('epochs')
|
|
plt.ylabel('IoU')
|
|
|
|
# Set limits for y axis
|
|
#plt.ylim(0.55, 0.95)
|
|
|
|
# Display legends and title
|
|
plt.legend(loc=4)
|
|
|
|
# Customize the graph
|
|
ax = fig.gca()
|
|
ax.grid(linestyle='-.', which='both')
|
|
#ax.set_yticks(np.arange(0.8, 1.02, 0.02))
|
|
|
|
displayed_classes = [0, 1, 2, 3, 4, 5, 6, 7]
|
|
#displayed_classes = []
|
|
for c_i, c_name in enumerate(class_list):
|
|
if c_i in displayed_classes:
|
|
|
|
# Figure
|
|
fig = plt.figure(c_name + ' IoU')
|
|
for i, name in enumerate(list_of_names):
|
|
plt.plot(all_pred_epochs[i], all_val_class_IoUs[i][:, c_i], linewidth=1, label=name)
|
|
plt.xlabel('epochs')
|
|
plt.ylabel('IoU')
|
|
|
|
# Set limits for y axis
|
|
#plt.ylim(0.8, 1)
|
|
|
|
# Display legends and title
|
|
plt.legend(loc=4)
|
|
|
|
# Customize the graph
|
|
ax = fig.gca()
|
|
ax.grid(linestyle='-.', which='both')
|
|
#ax.set_yticks(np.arange(0.8, 1.02, 0.02))
|
|
|
|
|
|
|
|
# Show all
|
|
plt.show()
|
|
|
|
|
|
# ----------------------------------------------------------------------------------------------------------------------
|
|
#
|
|
# Main Call
|
|
# \***************/
|
|
#
|
|
|
|
|
|
def ModelNet40_first_test():
|
|
"""
|
|
First tries with ModelNet40
|
|
First we compare convergence of a very very deep network on ModelNet40, with our without bn
|
|
Then, We try the resuming of previous trainings. Which works quite well.
|
|
However in the mean time, we change how validation worked by calling net.eval()/net.train() before/after
|
|
validation. It seems that the network perform strange when calling net.eval()/net.train() although it should be the
|
|
right way to do it.
|
|
Then we try to change BatchNorm1D with InstanceNorm1D and compare with and without calling eval/train at validation.
|
|
(Also with a faster lr decay).
|
|
--- MISTAKE FOUND --- the batch norm momentum was inverted 0.98 instead of 0.02.
|
|
See next experiment for correct convergences. Instance norm seems not as good
|
|
"""
|
|
|
|
# Using the dates of the logs, you can easily gather consecutive ones. All logs should be of the same dataset.
|
|
start = 'Log_2020-03-18_16-04-20'
|
|
end = 'Log_2020-03-20_16-59-40'
|
|
|
|
if end < 'Log_2020-03-22_19-30-19':
|
|
res_path = 'old_results'
|
|
else:
|
|
res_path = 'results'
|
|
|
|
logs = np.sort([join(res_path, l) for l in listdir(res_path) if start <= l <= end])
|
|
|
|
# Give names to the logs (for legends)
|
|
logs_names = ['with_bn',
|
|
'without_bn',
|
|
'with_bn2',
|
|
'without_bn2',
|
|
'lrd_80_Inorm_eval_train',
|
|
'lrd_80_Inorm_always_train',
|
|
'test']
|
|
|
|
logs_names = np.array(logs_names[:len(logs)])
|
|
|
|
return logs, logs_names
|
|
|
|
|
|
def ModelNet40_batch_norm():
|
|
"""
|
|
Compare different type of batch norm now that it has been fixed. Batch norm seems the best easily. Instance norm
|
|
crewated a NAN loss so avoid this one.
|
|
Now try fast experiments. First reduce network size. Reducing the number of convolution per layer does not affect
|
|
results (maybe because dataset is too simple???). 5 small layers is way better that 4 big layers.
|
|
Now reduce number of step per epoch and maybe try balanced sampler. Balanced sampler with fewer steps per epoch is
|
|
way faster for convergence and gets nearly the same scores. so good for experimenting. However we cant really
|
|
conclude between parameters which will get the same score (like the more layers) because the dataset my be
|
|
limitating. We can only conclude if something is not good and reduce score.
|
|
"""
|
|
|
|
# Using the dates of the logs, you can easily gather consecutive ones. All logs should be of the same dataset.
|
|
start = 'Log_2020-03-20_16-59-41'
|
|
end = 'Log_2020-04-13_18-14-44'
|
|
|
|
if end < 'Log_2020-03-22_19-30-19':
|
|
res_path = 'old_results'
|
|
else:
|
|
res_path = 'results'
|
|
|
|
logs = np.sort([join(res_path, l) for l in listdir(res_path) if start <= l <= end])
|
|
|
|
# Give names to the logs (for legends)
|
|
logs_names = ['no_norm',
|
|
'IN',
|
|
'BN',
|
|
'5_small_layer-d0=0.02',
|
|
'3_big_layer-d0=0.02',
|
|
'3_big_layer-d0=0.04',
|
|
'small-e_n=300',
|
|
'small-e_n=300-balanced_train',
|
|
'small-e_n=300-balanced_traintest',
|
|
'test']
|
|
|
|
logs_names = np.array(logs_names[:len(logs)])
|
|
|
|
return logs, logs_names
|
|
|
|
|
|
def ModelNet40_fast_vs_results():
|
|
"""
|
|
Try lr decay with fast convergence (epoch_n=300 and balanced traintest). 80 is a good value.
|
|
"""
|
|
|
|
# Using the dates of the logs, you can easily gather consecutive ones. All logs should be of the same dataset.
|
|
start = 'Log_2020-03-21_16-09-17'
|
|
end = 'Log_2020-03-21_16-09-36'
|
|
|
|
if end < 'Log_2020-03-22_19-30-19':
|
|
res_path = 'old_results'
|
|
else:
|
|
res_path = 'results'
|
|
|
|
logs = np.sort([join(res_path, l) for l in listdir(res_path) if start <= l <= end])
|
|
logs = np.insert(logs, 1, join(res_path, 'Log_2020-03-21_11-57-45'))
|
|
|
|
# Give names to the logs (for legends)
|
|
logs_names = ['lrd=120',
|
|
'lrd=80',
|
|
'lrd=40',
|
|
'test']
|
|
|
|
logs_names = np.array(logs_names[:len(logs)])
|
|
|
|
return logs, logs_names
|
|
|
|
|
|
def ModelNet40_grad_clipping():
|
|
"""
|
|
Test different grad clipping. No difference so we can move on
|
|
"""
|
|
|
|
# Using the dates of the logs, you can easily gather consecutive ones. All logs should be of the same dataset.
|
|
start = 'Log_2020-03-21_18-21-37'
|
|
end = 'Log_2020-03-21_18-30-01'
|
|
|
|
if end < 'Log_2020-03-22_19-30-19':
|
|
res_path = 'old_results'
|
|
else:
|
|
res_path = 'results'
|
|
|
|
logs = np.sort([join(res_path, l) for l in listdir(res_path) if start <= l <= end])
|
|
logs = np.insert(logs, 0, join(res_path, 'Log_2020-03-21_11-57-45'))
|
|
|
|
# Give names to the logs (for legends)
|
|
logs_names = ['value_clip_100',
|
|
'norm_clip_100',
|
|
'value_clip_10',
|
|
'norm_clip_10',
|
|
'no_clip',
|
|
'test']
|
|
|
|
logs_names = np.array(logs_names[:len(logs)])
|
|
|
|
return logs, logs_names
|
|
|
|
|
|
def ModelNet40_KP_extent():
|
|
"""
|
|
Test differents mode et kp extent. sum et extent=2.0 definitivement moins bon (trop de recouvrement des kp
|
|
influences, noyau moins versatile). les closest semble plutot bon et le sum extent=1.5 pas mal du tout () peut
|
|
etre le meilleur. A confirmer sur gros dataset
|
|
"""
|
|
|
|
# Using the dates of the logs, you can easily gather consecutive ones. All logs should be of the same dataset.
|
|
start = 'Log_2020-03-21_18-30-02'
|
|
end = 'Log_2020-03-21_23-36-18'
|
|
|
|
if end < 'Log_2020-03-22_19-30-19':
|
|
res_path = 'old_results'
|
|
else:
|
|
res_path = 'results'
|
|
|
|
logs = np.sort([join(res_path, l) for l in listdir(res_path) if start <= l <= end])
|
|
logs = np.insert(logs, 0, join(res_path, 'Log_2020-03-21_11-57-45'))
|
|
|
|
# Give names to the logs (for legends)
|
|
logs_names = ['KPe=1.0_sum_linear',
|
|
'KPe=1.5_sum_linear',
|
|
'KPe=2.0_sum_linear',
|
|
'KPe=1.5_closest_linear',
|
|
'KPe=2.0_closest_linear',
|
|
'test']
|
|
|
|
logs_names = np.array(logs_names[:len(logs)])
|
|
|
|
return logs, logs_names
|
|
|
|
|
|
def ModelNet40_gaussian():
|
|
"""
|
|
Test different extent in gaussian mode. extent=1.5 seems the best. 2.0 is not bad. But in any case, it does not
|
|
perform better than 1.5-linear-sum at least on this dataset.
|
|
"""
|
|
|
|
# Using the dates of the logs, you can easily gather consecutive ones. All logs should be of the same dataset.
|
|
start = 'Log_2020-03-21_23-36-19'
|
|
end = 'Log_2020-04-13_18-14-44'
|
|
|
|
if end < 'Log_2020-03-22_19-30-19':
|
|
res_path = 'old_results'
|
|
else:
|
|
res_path = 'results'
|
|
|
|
logs = np.sort([join(res_path, l) for l in listdir(res_path) if start <= l <= end])
|
|
logs = np.insert(logs, 4, join(res_path, 'Log_2020-03-21_19-35-11'))
|
|
|
|
# Give names to the logs (for legends)
|
|
logs_names = ['KPe=1.0_sum_gaussian',
|
|
'KPe=1.5_sum_gaussian',
|
|
'KPe=2.0_sum_gaussian',
|
|
'KPe=2.5_sum_gaussian',
|
|
'KPe=1.5_sum_linear',
|
|
'test']
|
|
|
|
logs_names = np.array(logs_names[:len(logs)])
|
|
|
|
return logs, logs_names
|
|
|
|
|
|
def ModelNet40_normals():
|
|
"""
|
|
Test different way to add normals. Seems pretty much the same and we dont care about normals.
|
|
"""
|
|
|
|
# Using the dates of the logs, you can easily gather consecutive ones. All logs should be of the same dataset.
|
|
start = 'Log_2020-03-22_10-18-56'
|
|
end = 'Log_2020-03-22_13-32-51'
|
|
|
|
if end < 'Log_2020-03-22_19-30-19':
|
|
res_path = 'old_results'
|
|
else:
|
|
res_path = 'results'
|
|
|
|
logs = np.sort([join(res_path, l) for l in listdir(res_path) if start <= l <= end])
|
|
logs = np.insert(logs, 0, join(res_path, 'Log_2020-03-21_19-35-11'))
|
|
|
|
# Give names to the logs (for legends)
|
|
logs_names = ['no_normals',
|
|
'anisotropic_scale_normals',
|
|
'wrong_scale_normals',
|
|
'only_symmetries_normals(cheating)',
|
|
'test']
|
|
|
|
logs_names = np.array(logs_names[:len(logs)])
|
|
|
|
return logs, logs_names
|
|
|
|
|
|
def ModelNet40_radius():
|
|
"""
|
|
Test different convolution radius. It was expected that larger radius would means slower networks but better
|
|
performances. In fact we do not see much difference (again because of the dataset maybe?)
|
|
"""
|
|
|
|
# Using the dates of the logs, you can easily gather consecutive ones. All logs should be of the same dataset.
|
|
start = 'Log_2020-03-22_13-32-52'
|
|
end = 'Log_2020-03-22_19-30-17'
|
|
|
|
if end < 'Log_2020-03-22_19-30-19':
|
|
res_path = 'old_results'
|
|
else:
|
|
res_path = 'results'
|
|
|
|
logs = np.sort([join(res_path, l) for l in listdir(res_path) if start <= l <= end])
|
|
logs = np.insert(logs, 2, join(res_path, 'Log_2020-03-21_19-35-11'))
|
|
|
|
# Give names to the logs (for legends)
|
|
logs_names = ['KPe=0.9_r=1.5',
|
|
'KPe=1.2_r=2.0',
|
|
'KPe=1.5_r=2.5',
|
|
'KPe=1.8_r=3.0',
|
|
'KPe=2.1_r=3.5',
|
|
'test']
|
|
|
|
logs_names = np.array(logs_names[:len(logs)])
|
|
|
|
return logs, logs_names
|
|
|
|
|
|
def ModelNet40_deform(old_result_limit):
|
|
"""
|
|
Test deformable convolution with different offset decay. Without modulations 0.01 seems the best. With
|
|
modulations 0.1 seems the best. In all cases 1.0 is to much. We need to show deformations for verification.
|
|
|
|
It seems that deformations are not really fittig the point cloud. They just reach further away. W need to try on
|
|
other datasets and with deformations earlier to see if fitting loss works
|
|
"""
|
|
|
|
# Using the dates of the logs, you can easily gather consecutive ones. All logs should be of the same dataset.
|
|
start = 'Log_2020-03-22_19-30-21'
|
|
end = 'Log_2020-03-25_19-30-17'
|
|
|
|
if end < old_result_limit:
|
|
res_path = 'old_results'
|
|
else:
|
|
res_path = 'results'
|
|
|
|
logs = np.sort([join(res_path, l) for l in listdir(res_path) if start <= l <= end])
|
|
logs = logs.astype('<U50')
|
|
logs = np.insert(logs, 0, join('old_results', 'Log_2020-03-21_19-35-11'))
|
|
|
|
# Give names to the logs (for legends)
|
|
logs_names = ['normal',
|
|
'offset_d=0.01',
|
|
'offset_d=0.1',
|
|
'offset_d=1.0',
|
|
'offset_d=0.001',
|
|
'offset_d=0.001_modu',
|
|
'offset_d=0.01_modu',
|
|
'offset_d=0.1_modu',
|
|
'offset_d=1.0_modu',
|
|
'test']
|
|
|
|
logs_names = np.array(logs_names[:len(logs)])
|
|
|
|
return logs, logs_names
|
|
|
|
|
|
def S3DIS_first(old_result_limit):
|
|
"""
|
|
Test first S3DIS. First two test have all symetries (even vertical), which is not good). We corecct for
|
|
the following.
|
|
Then we try some experiments with different input scalea and the results are not as high as expected.
|
|
WHY?
|
|
FOUND IT! Problem resnet bottleneck should divide out-dim by 4 and not by 2
|
|
"""
|
|
|
|
# Using the dates of the logs, you can easily gather consecutive ones. All logs should be of the same dataset.
|
|
start = 'Log_2020-03-25_19-30-17'
|
|
end = 'Log_2020-04-03_11-12-05'
|
|
|
|
if end < old_result_limit:
|
|
res_path = 'old_results'
|
|
else:
|
|
res_path = 'results'
|
|
|
|
logs = np.sort([join(res_path, l) for l in listdir(res_path) if start <= l <= end])
|
|
logs = logs.astype('<U50')
|
|
|
|
# Give names to the logs (for legends)
|
|
logs_names = ['Fin=1_R=1.2_r=0.02 (error all symetries)',
|
|
'Fin=1_R=2.5_r=0.04 (error all symetries)',
|
|
'Fin=5_R=1.2_r=0.02',
|
|
'Fin=5_R=1.8_r=0.03',
|
|
'Fin=5_R=2.5_r=0.04',
|
|
'original_normal',
|
|
'original_deform',
|
|
'original_random_sampler',
|
|
'original_potentials_batch16',
|
|
'test']
|
|
|
|
logs_names = np.array(logs_names[:len(logs)])
|
|
|
|
return logs, logs_names
|
|
|
|
|
|
def S3DIS_go(old_result_limit):
|
|
"""
|
|
Test S3DIS.
|
|
"""
|
|
|
|
# Using the dates of the logs, you can easily gather consecutive ones. All logs should be of the same dataset.
|
|
start = 'Log_2020-04-03_11-12-07'
|
|
end = 'Log_2020-04-07_15-30-17'
|
|
|
|
if end < old_result_limit:
|
|
res_path = 'old_results'
|
|
else:
|
|
res_path = 'results'
|
|
|
|
logs = np.sort([join(res_path, l) for l in listdir(res_path) if start <= l <= end])
|
|
logs = logs.astype('<U50')
|
|
|
|
# Give names to the logs (for legends)
|
|
logs_names = ['R=2.0_r=0.04_Din=128_potential',
|
|
'R=2.0_r=0.04_Din=64_potential',
|
|
'R=1.8_r=0.03',
|
|
'R=1.8_r=0.03_deeper',
|
|
'R=1.8_r=0.03_deform',
|
|
'R=2.0_r=0.03_megadeep',
|
|
'R=2.5_r=0.03_megadeep',
|
|
'test']
|
|
|
|
logs_names = np.array(logs_names[:len(logs)])
|
|
|
|
return logs, logs_names
|
|
|
|
|
|
def SemanticKittiFirst(old_result_limit):
|
|
"""
|
|
Test SematicKitti. First exps
|
|
"""
|
|
|
|
# Using the dates of the logs, you can easily gather consecutive ones. All logs should be of the same dataset.
|
|
start = 'Log_2020-04-07_15-30-17'
|
|
end = 'Log_2020-05-07_15-30-17'
|
|
|
|
if end < old_result_limit:
|
|
res_path = 'old_results'
|
|
else:
|
|
res_path = 'results'
|
|
|
|
logs = np.sort([join(res_path, l) for l in listdir(res_path) if start <= l <= end])
|
|
logs = logs.astype('<U50')
|
|
|
|
# Give names to the logs (for legends)
|
|
logs_names = ['R=5.0_dl=0.04',
|
|
'R=5.0_dl=0.08',
|
|
'R=10.0_dl=0.08',
|
|
'test']
|
|
|
|
logs_names = np.array(logs_names[:len(logs)])
|
|
|
|
return logs, logs_names
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
######################################################
|
|
# Choose a list of log to plot together for comparison
|
|
######################################################
|
|
|
|
# TODO: test deformable on S3DIS to see of fitting loss works
|
|
# TODO: GOOOO SemanticKitti for wednesday at least have a timing to give to them
|
|
# TODO: try class weights on S3DIS (very low weight for beam)
|
|
|
|
# Old result limit
|
|
old_res_lim = 'Log_2020-03-25_19-30-17'
|
|
|
|
# My logs: choose the logs to show
|
|
logs, logs_names = SemanticKittiFirst(old_res_lim)
|
|
#os.environ['QT_DEBUG_PLUGINS'] = '1'
|
|
|
|
######################################################
|
|
# Choose a list of log to plot together for comparison
|
|
######################################################
|
|
|
|
# Check that all logs are of the same dataset. Different object can be compared
|
|
plot_dataset = None
|
|
config = None
|
|
for log in logs:
|
|
config = Config()
|
|
config.load(log)
|
|
if 'ShapeNetPart' in config.dataset:
|
|
this_dataset = 'ShapeNetPart'
|
|
else:
|
|
this_dataset = config.dataset
|
|
if plot_dataset:
|
|
if plot_dataset == this_dataset:
|
|
continue
|
|
else:
|
|
raise ValueError('All logs must share the same dataset to be compared')
|
|
else:
|
|
plot_dataset = this_dataset
|
|
|
|
# Plot the training loss and accuracy
|
|
compare_trainings(logs, logs_names)
|
|
|
|
# Plot the validation
|
|
if config.dataset_task == 'classification':
|
|
compare_convergences_classif(logs, logs_names)
|
|
elif config.dataset_task == 'cloud_segmentation':
|
|
if config.dataset.startswith('S3DIS'):
|
|
dataset = S3DISDataset(config, load_data=False)
|
|
compare_convergences_segment(dataset, logs, logs_names)
|
|
elif config.dataset_task == 'slam_segmentation':
|
|
if config.dataset.startswith('SemanticKitti'):
|
|
dataset = SemanticKittiDataset(config)
|
|
compare_convergences_SLAM(dataset, logs, logs_names)
|
|
else:
|
|
raise ValueError('Unsupported dataset : ' + plot_dataset)
|
|
|
|
|
|
|
|
|