KPConv-PyTorch/train_ModelNet40.py
Laurent FAINSIN d0cdb8e4ee 🎨 black + ruff
2023-05-15 17:18:10 +02:00

296 lines
8.1 KiB
Python

#
#
# 0=================================0
# | Kernel Point Convolutions |
# 0=================================0
#
#
# ----------------------------------------------------------------------------------------------------------------------
#
# Callable script to start a training on ModelNet40 dataset
#
# ----------------------------------------------------------------------------------------------------------------------
#
# Hugues THOMAS - 06/03/2020
#
# ----------------------------------------------------------------------------------------------------------------------
#
# Imports and global variables
# \**********************************/
#
# Common libs
import signal
import os
import numpy as np
import sys
# Dataset
from datasetss.ModelNet40 import *
from torch.utils.data import DataLoader
from utils.config import Config
from utils.trainer import ModelTrainer
from models.architectures import KPCNN
# ----------------------------------------------------------------------------------------------------------------------
#
# Config Class
# \******************/
#
class Modelnet40Config(Config):
"""
Override the parameters you want to modify for this dataset
"""
####################
# Dataset parameters
####################
# Dataset name
dataset = "ModelNet40"
# Number of classes in the dataset (This value is overwritten by dataset class when Initializating dataset).
num_classes = None
# Type of task performed on this dataset (also overwritten)
dataset_task = ""
# Number of CPU threads for the input pipeline
input_threads = 10
#########################
# Architecture definition
#########################
# Define layers
architecture = [
"simple",
"resnetb",
"resnetb_strided",
"resnetb",
"resnetb",
"resnetb_strided",
"resnetb",
"resnetb",
"resnetb_strided",
"resnetb",
"resnetb",
"resnetb_strided",
"resnetb",
"resnetb",
"global_average",
]
###################
# KPConv parameters
###################
# Number of kernel points
num_kernel_points = 15
# Size of the first subsampling grid in meter
first_subsampling_dl = 0.02
# Radius of convolution in "number grid cell". (2.5 is the standard value)
conv_radius = 2.5
# Radius of deformable convolution in "number grid cell". Larger so that deformed kernel can spread out
deform_radius = 6.0
# Radius of the area of influence of each kernel point in "number grid cell". (1.0 is the standard value)
KP_extent = 1.2
# Behavior of convolutions in ('constant', 'linear', 'gaussian')
KP_influence = "linear"
# Aggregation function of KPConv in ('closest', 'sum')
aggregation_mode = "sum"
# Choice of input features
in_features_dim = 1
# Can the network learn modulations
modulated = True
# Batch normalization parameters
use_batch_norm = True
batch_norm_momentum = 0.05
# Deformable offset loss
# 'point2point' fitting geometry by penalizing distance from deform point to input points
# 'point2plane' fitting geometry by penalizing distance from deform point to input point triplet (not implemented)
deform_fitting_mode = "point2point"
deform_fitting_power = 1.0 # Multiplier for the fitting/repulsive loss
deform_lr_factor = 0.1 # Multiplier for learning rate applied to the deformations
repulse_extent = 1.2 # Distance of repulsion for deformed kernel points
#####################
# Training parameters
#####################
# Maximal number of epochs
max_epoch = 500
# Learning rate management
learning_rate = 1e-2
momentum = 0.98
lr_decays = {i: 0.1 ** (1 / 100) for i in range(1, max_epoch)}
grad_clip_norm = 100.0
# Number of batch
batch_num = 10
# Number of steps per epochs
epoch_steps = 300
# Number of validation examples per epoch
validation_size = 30
# Number of epoch between each checkpoint
checkpoint_gap = 50
# Augmentations
augment_scale_anisotropic = True
augment_symmetries = [True, True, True]
augment_rotation = "none"
augment_scale_min = 0.8
augment_scale_max = 1.2
augment_noise = 0.001
augment_color = 1.0
# The way we balance segmentation loss
# > 'none': Each point in the whole batch has the same contribution.
# > 'class': Each class has the same contribution (points are weighted according to class balance)
# > 'batch': Each cloud in the batch has the same contribution (points are weighted according cloud sizes)
segloss_balance = "none"
# Do we nee to save convergence
saving = True
saving_path = None
# ----------------------------------------------------------------------------------------------------------------------
#
# Main Call
# \***************/
#
if __name__ == "__main__":
############################
# Initialize the environment
############################
# Set which gpu is going to be used
GPU_ID = "0"
# Set GPU visible device
os.environ["CUDA_VISIBLE_DEVICES"] = GPU_ID
###############
# Previous chkp
###############
# Choose here if you want to start training from a previous snapshot (None for new training)
# previous_training_path = 'Log_2020-03-19_19-53-27'
previous_training_path = ""
# Choose index of checkpoint to start from. If None, uses the latest chkp
chkp_idx = None
if previous_training_path:
# Find all snapshot in the chosen training folder
chkp_path = os.path.join("results", previous_training_path, "checkpoints")
chkps = [f for f in os.listdir(chkp_path) if f[:4] == "chkp"]
# Find which snapshot to restore
if chkp_idx is None:
chosen_chkp = "current_chkp.tar"
else:
chosen_chkp = np.sort(chkps)[chkp_idx]
chosen_chkp = os.path.join(
"results", previous_training_path, "checkpoints", chosen_chkp
)
else:
chosen_chkp = None
##############
# Prepare Data
##############
print()
print("Data Preparation")
print("****************")
# Initialize configuration class
config = Modelnet40Config()
if previous_training_path:
config.load(os.path.join("results", previous_training_path))
config.saving_path = None
# Get path from argument if given
if len(sys.argv) > 1:
config.saving_path = sys.argv[1]
# Initialize datasets
training_dataset = ModelNet40Dataset(config, train=True)
test_dataset = ModelNet40Dataset(config, train=False)
# Initialize samplers
training_sampler = ModelNet40Sampler(training_dataset, balance_labels=True)
test_sampler = ModelNet40Sampler(test_dataset, balance_labels=True)
# Initialize the dataloader
training_loader = DataLoader(
training_dataset,
batch_size=1,
sampler=training_sampler,
collate_fn=ModelNet40Collate,
num_workers=config.input_threads,
pin_memory=True,
)
test_loader = DataLoader(
test_dataset,
batch_size=1,
sampler=test_sampler,
collate_fn=ModelNet40Collate,
num_workers=config.input_threads,
pin_memory=True,
)
# Calibrate samplers
training_sampler.calibration(training_loader)
test_sampler.calibration(test_loader)
# debug_timing(test_dataset, test_sampler, test_loader)
# debug_show_clouds(training_dataset, training_sampler, training_loader)
print("\nModel Preparation")
print("*****************")
# Define network model
t1 = time.time()
net = KPCNN(config)
# Define a trainer class
trainer = ModelTrainer(net, config, chkp_path=chosen_chkp)
print("Done in {:.1f}s\n".format(time.time() - t1))
print("\nStart training")
print("**************")
# Training
try:
trainer.train(net, training_loader, test_loader, config)
except:
print("Caught an error")
os.kill(os.getpid(), signal.SIGINT)
print("Forcing exit now")
os.kill(os.getpid(), signal.SIGINT)