KPConv-PyTorch/utils/config.py
Laurent FAINSIN d0cdb8e4ee 🎨 black + ruff
2023-05-15 17:18:10 +02:00

421 lines
15 KiB
Python

#
#
# 0=================================0
# | Kernel Point Convolutions |
# 0=================================0
#
#
# ----------------------------------------------------------------------------------------------------------------------
#
# Configuration class
#
# ----------------------------------------------------------------------------------------------------------------------
#
# Hugues THOMAS - 11/06/2018
#
from os.path import join
import numpy as np
# Colors for printing
class bcolors:
HEADER = "\033[95m"
OKBLUE = "\033[94m"
OKGREEN = "\033[92m"
WARNING = "\033[93m"
FAIL = "\033[91m"
ENDC = "\033[0m"
BOLD = "\033[1m"
UNDERLINE = "\033[4m"
class Config:
"""
Class containing the parameters you want to modify for this dataset
"""
##################
# Input parameters
##################
# Dataset name
dataset = ""
# Type of network model
dataset_task = ""
# Number of classes in the dataset
num_classes = 0
# Dimension of input points
in_points_dim = 3
# Dimension of input features
in_features_dim = 1
# Radius of the input sphere (ignored for models, only used for point clouds)
in_radius = 1.0
# Number of CPU threads for the input pipeline
input_threads = 8
##################
# Model parameters
##################
# Architecture definition. List of blocks
architecture = []
# Decide the mode of equivariance and invariance
equivar_mode = ""
invar_mode = ""
# Dimension of the first feature maps
first_features_dim = 64
# Batch normalization parameters
use_batch_norm = True
batch_norm_momentum = 0.99
# For segmentation models : ratio between the segmented area and the input area
segmentation_ratio = 1.0
###################
# KPConv parameters
###################
# Number of kernel points
num_kernel_points = 15
# Size of the first subsampling grid in meter
first_subsampling_dl = 0.02
# Radius of convolution in "number grid cell". (2.5 is the standard value)
conv_radius = 2.5
# Radius of deformable convolution in "number grid cell". Larger so that deformed kernel can spread out
deform_radius = 5.0
# Kernel point influence radius
KP_extent = 1.0
# Influence function when d < KP_extent. ('constant', 'linear', 'gaussian') When d > KP_extent, always zero
KP_influence = "linear"
# Aggregation function of KPConv in ('closest', 'sum')
# Decide if you sum all kernel point influences, or if you only take the influence of the closest KP
aggregation_mode = "sum"
# Fixed points in the kernel : 'none', 'center' or 'verticals'
fixed_kernel_points = "center"
# Use modulateion in deformable convolutions
modulated = False
# For SLAM datasets like SemanticKitti number of frames used (minimum one)
n_frames = 1
# For SLAM datasets like SemanticKitti max number of point in input cloud + validation
max_in_points = 0
val_radius = 51.0
max_val_points = 50000
#####################
# Training parameters
#####################
# Network optimizer parameters (learning rate and momentum)
learning_rate = 1e-3
momentum = 0.9
# Learning rate decays. Dictionary of all decay values with their epoch {epoch: decay}.
lr_decays = {200: 0.2, 300: 0.2}
# Gradient clipping value (negative means no clipping)
grad_clip_norm = 100.0
# Augmentation parameters
augment_scale_anisotropic = True
augment_scale_min = 0.9
augment_scale_max = 1.1
augment_symmetries = [False, False, False]
augment_rotation = "vertical"
augment_noise = 0.005
augment_color = 0.7
# Augment with occlusions (not implemented yet)
augment_occlusion = "none"
augment_occlusion_ratio = 0.2
augment_occlusion_num = 1
# Regularization loss importance
weight_decay = 1e-3
# The way we balance segmentation loss DEPRECATED
segloss_balance = "none"
# Choose weights for class (used in segmentation loss). Empty list for no weights
class_w = []
# Deformable offset loss
# 'point2point' fitting geometry by penalizing distance from deform point to input points
# 'point2plane' fitting geometry by penalizing distance from deform point to input point triplet (not implemented)
deform_fitting_mode = "point2point"
deform_fitting_power = 1.0 # Multiplier for the fitting/repulsive loss
deform_lr_factor = 0.1 # Multiplier for learning rate applied to the deformations
repulse_extent = 1.0 # Distance of repulsion for deformed kernel points
# Number of batch
batch_num = 10
val_batch_num = 10
# Maximal number of epochs
max_epoch = 1000
# Number of steps per epochs
epoch_steps = 1000
# Number of validation examples per epoch
validation_size = 100
# Number of epoch between each checkpoint
checkpoint_gap = 50
# Do we nee to save convergence
saving = True
saving_path = None
def __init__(self):
"""
Class Initialyser
"""
# Number of layers
self.num_layers = (
len(
[
block
for block in self.architecture
if "pool" in block or "strided" in block
]
)
+ 1
)
###################
# Deform layer list
###################
#
# List of boolean indicating which layer has a deformable convolution
#
layer_blocks = []
self.deform_layers = []
arch = self.architecture
for block_i, block in enumerate(arch):
# Get all blocks of the layer
if not (
"pool" in block
or "strided" in block
or "global" in block
or "upsample" in block
):
layer_blocks += [block]
continue
# Convolution neighbors indices
# *****************************
deform_layer = False
if layer_blocks:
if np.any(["deformable" in blck for blck in layer_blocks]):
deform_layer = True
if "pool" in block or "strided" in block:
if "deformable" in block:
deform_layer = True
self.deform_layers += [deform_layer]
layer_blocks = []
# Stop when meeting a global pooling or upsampling
if "global" in block or "upsample" in block:
break
def load(self, path):
filename = join(path, "parameters.txt")
with open(filename, "r") as f:
lines = f.readlines()
# Class variable dictionary
for line in lines:
line_info = line.split()
if len(line_info) > 2 and line_info[0] != "#":
if line_info[2] == "None":
setattr(self, line_info[0], None)
elif line_info[0] == "lr_decay_epochs":
self.lr_decays = {
int(b.split(":")[0]): float(b.split(":")[1])
for b in line_info[2:]
}
elif line_info[0] == "architecture":
self.architecture = [b for b in line_info[2:]]
elif line_info[0] == "augment_symmetries":
self.augment_symmetries = [bool(int(b)) for b in line_info[2:]]
elif line_info[0] == "num_classes":
if len(line_info) > 3:
self.num_classes = [int(c) for c in line_info[2:]]
else:
self.num_classes = int(line_info[2])
elif line_info[0] == "class_w":
self.class_w = [float(w) for w in line_info[2:]]
elif hasattr(self, line_info[0]):
attr_type = type(getattr(self, line_info[0]))
if attr_type == bool:
setattr(self, line_info[0], attr_type(int(line_info[2])))
else:
setattr(self, line_info[0], attr_type(line_info[2]))
self.saving = True
self.saving_path = path
self.__init__()
def save(self):
with open(join(self.saving_path, "parameters.txt"), "w") as text_file:
text_file.write("# -----------------------------------#\n")
text_file.write("# Parameters of the training session #\n")
text_file.write("# -----------------------------------#\n\n")
# Input parameters
text_file.write("# Input parameters\n")
text_file.write("# ****************\n\n")
text_file.write("dataset = {:s}\n".format(self.dataset))
text_file.write("dataset_task = {:s}\n".format(self.dataset_task))
if type(self.num_classes) is list:
text_file.write("num_classes =")
for n in self.num_classes:
text_file.write(" {:d}".format(n))
text_file.write("\n")
else:
text_file.write("num_classes = {:d}\n".format(self.num_classes))
text_file.write("in_points_dim = {:d}\n".format(self.in_points_dim))
text_file.write("in_features_dim = {:d}\n".format(self.in_features_dim))
text_file.write("in_radius = {:.6f}\n".format(self.in_radius))
text_file.write("input_threads = {:d}\n\n".format(self.input_threads))
# Model parameters
text_file.write("# Model parameters\n")
text_file.write("# ****************\n\n")
text_file.write("architecture =")
for a in self.architecture:
text_file.write(" {:s}".format(a))
text_file.write("\n")
text_file.write("equivar_mode = {:s}\n".format(self.equivar_mode))
text_file.write("invar_mode = {:s}\n".format(self.invar_mode))
text_file.write("num_layers = {:d}\n".format(self.num_layers))
text_file.write(
"first_features_dim = {:d}\n".format(self.first_features_dim)
)
text_file.write("use_batch_norm = {:d}\n".format(int(self.use_batch_norm)))
text_file.write(
"batch_norm_momentum = {:.6f}\n\n".format(self.batch_norm_momentum)
)
text_file.write(
"segmentation_ratio = {:.6f}\n\n".format(self.segmentation_ratio)
)
# KPConv parameters
text_file.write("# KPConv parameters\n")
text_file.write("# *****************\n\n")
text_file.write(
"first_subsampling_dl = {:.6f}\n".format(self.first_subsampling_dl)
)
text_file.write("num_kernel_points = {:d}\n".format(self.num_kernel_points))
text_file.write("conv_radius = {:.6f}\n".format(self.conv_radius))
text_file.write("deform_radius = {:.6f}\n".format(self.deform_radius))
text_file.write(
"fixed_kernel_points = {:s}\n".format(self.fixed_kernel_points)
)
text_file.write("KP_extent = {:.6f}\n".format(self.KP_extent))
text_file.write("KP_influence = {:s}\n".format(self.KP_influence))
text_file.write("aggregation_mode = {:s}\n".format(self.aggregation_mode))
text_file.write("modulated = {:d}\n".format(int(self.modulated)))
text_file.write("n_frames = {:d}\n".format(self.n_frames))
text_file.write("max_in_points = {:d}\n\n".format(self.max_in_points))
text_file.write("max_val_points = {:d}\n\n".format(self.max_val_points))
text_file.write("val_radius = {:.6f}\n\n".format(self.val_radius))
# Training parameters
text_file.write("# Training parameters\n")
text_file.write("# *******************\n\n")
text_file.write("learning_rate = {:f}\n".format(self.learning_rate))
text_file.write("momentum = {:f}\n".format(self.momentum))
text_file.write("lr_decay_epochs =")
for e, d in self.lr_decays.items():
text_file.write(" {:d}:{:f}".format(e, d))
text_file.write("\n")
text_file.write("grad_clip_norm = {:f}\n\n".format(self.grad_clip_norm))
text_file.write("augment_symmetries =")
for a in self.augment_symmetries:
text_file.write(" {:d}".format(int(a)))
text_file.write("\n")
text_file.write("augment_rotation = {:s}\n".format(self.augment_rotation))
text_file.write("augment_noise = {:f}\n".format(self.augment_noise))
text_file.write("augment_occlusion = {:s}\n".format(self.augment_occlusion))
text_file.write(
"augment_occlusion_ratio = {:.6f}\n".format(
self.augment_occlusion_ratio
)
)
text_file.write(
"augment_occlusion_num = {:d}\n".format(self.augment_occlusion_num)
)
text_file.write(
"augment_scale_anisotropic = {:d}\n".format(
int(self.augment_scale_anisotropic)
)
)
text_file.write(
"augment_scale_min = {:.6f}\n".format(self.augment_scale_min)
)
text_file.write(
"augment_scale_max = {:.6f}\n".format(self.augment_scale_max)
)
text_file.write("augment_color = {:.6f}\n\n".format(self.augment_color))
text_file.write("weight_decay = {:f}\n".format(self.weight_decay))
text_file.write("segloss_balance = {:s}\n".format(self.segloss_balance))
text_file.write("class_w =")
for a in self.class_w:
text_file.write(" {:.6f}".format(a))
text_file.write("\n")
text_file.write(
"deform_fitting_mode = {:s}\n".format(self.deform_fitting_mode)
)
text_file.write(
"deform_fitting_power = {:.6f}\n".format(self.deform_fitting_power)
)
text_file.write("deform_lr_factor = {:.6f}\n".format(self.deform_lr_factor))
text_file.write("repulse_extent = {:.6f}\n".format(self.repulse_extent))
text_file.write("batch_num = {:d}\n".format(self.batch_num))
text_file.write("val_batch_num = {:d}\n".format(self.val_batch_num))
text_file.write("max_epoch = {:d}\n".format(self.max_epoch))
if self.epoch_steps is None:
text_file.write("epoch_steps = None\n")
else:
text_file.write("epoch_steps = {:d}\n".format(self.epoch_steps))
text_file.write("validation_size = {:d}\n".format(self.validation_size))
text_file.write("checkpoint_gap = {:d}\n".format(self.checkpoint_gap))