KPConv-PyTorch/utils/trainer.py
Laurent FAINSIN d0cdb8e4ee 🎨 black + ruff
2023-05-15 17:18:10 +02:00

948 lines
33 KiB
Python

#
#
# 0=================================0
# | Kernel Point Convolutions |
# 0=================================0
#
#
# ----------------------------------------------------------------------------------------------------------------------
#
# Class handling the training of any model
#
# ----------------------------------------------------------------------------------------------------------------------
#
# Hugues THOMAS - 11/06/2018
#
# ----------------------------------------------------------------------------------------------------------------------
#
# Imports and global variables
# \**********************************/
#
# Basic libs
import torch
import numpy as np
from os import makedirs, remove
from os.path import exists, join
import time
# PLY reader
from utils.ply import write_ply
# Metrics
from utils.metrics import IoU_from_confusions, fast_confusion
from utils.config import Config
# ----------------------------------------------------------------------------------------------------------------------
#
# Trainer Class
# \*******************/
#
class ModelTrainer:
# Initialization methods
# ------------------------------------------------------------------------------------------------------------------
def __init__(self, net, config, chkp_path=None, finetune=False, on_gpu=True):
"""
Initialize training parameters and reload previous model for restore/finetune
:param net: network object
:param config: configuration object
:param chkp_path: path to the checkpoint that needs to be loaded (None for new training)
:param finetune: finetune from checkpoint (True) or restore training from checkpoint (False)
:param on_gpu: Train on GPU or CPU
"""
############
# Parameters
############
# Epoch index
self.epoch = 0
self.step = 0
# Optimizer with specific learning rate for deformable KPConv
deform_params = [v for k, v in net.named_parameters() if "offset" in k]
other_params = [v for k, v in net.named_parameters() if "offset" not in k]
deform_lr = config.learning_rate * config.deform_lr_factor
self.optimizer = torch.optim.SGD(
[{"params": other_params}, {"params": deform_params, "lr": deform_lr}],
lr=config.learning_rate,
momentum=config.momentum,
weight_decay=config.weight_decay,
)
# Choose to train on CPU or GPU
if on_gpu and torch.cuda.is_available():
self.device = torch.device("cuda:0")
else:
self.device = torch.device("cpu")
net.to(self.device)
##########################
# Load previous checkpoint
##########################
if chkp_path is not None:
if finetune:
checkpoint = torch.load(chkp_path)
net.load_state_dict(checkpoint["model_state_dict"])
net.train()
print("Model restored and ready for finetuning.")
else:
checkpoint = torch.load(chkp_path)
net.load_state_dict(checkpoint["model_state_dict"])
self.optimizer.load_state_dict(checkpoint["optimizer_state_dict"])
self.epoch = checkpoint["epoch"]
net.train()
print("Model and training state restored.")
# Path of the result folder
if config.saving:
if config.saving_path is None:
config.saving_path = time.strftime(
"results/Log_%Y-%m-%d_%H-%M-%S", time.gmtime()
)
if not exists(config.saving_path):
makedirs(config.saving_path)
config.save()
return
# Training main method
# ------------------------------------------------------------------------------------------------------------------
def train(self, net, training_loader, val_loader, config):
"""
Train the model on a particular dataset.
"""
################
# Initialization
################
if config.saving:
# Training log file
with open(join(config.saving_path, "training.txt"), "w") as file:
file.write("epochs steps out_loss offset_loss train_accuracy time\n")
# Killing file (simply delete this file when you want to stop the training)
PID_file = join(config.saving_path, "running_PID.txt")
if not exists(PID_file):
with open(PID_file, "w") as file:
file.write("Launched with PyCharm")
# Checkpoints directory
checkpoint_directory = join(config.saving_path, "checkpoints")
if not exists(checkpoint_directory):
makedirs(checkpoint_directory)
else:
checkpoint_directory = None
PID_file = None
# Loop variables
t0 = time.time()
t = [time.time()]
last_display = time.time()
mean_dt = np.zeros(1)
# Start training loop
for epoch in range(config.max_epoch):
# Remove File for kill signal
if epoch == config.max_epoch - 1 and exists(PID_file):
remove(PID_file)
self.step = 0
for batch in training_loader:
# Check kill signal (running_PID.txt deleted)
if config.saving and not exists(PID_file):
continue
##################
# Processing batch
##################
# New time
t = t[-1:]
t += [time.time()]
if "cuda" in self.device.type:
batch.to(self.device)
# zero the parameter gradients
self.optimizer.zero_grad()
# Forward pass
outputs = net(batch, config)
loss = net.loss(outputs, batch.labels)
acc = net.accuracy(outputs, batch.labels)
t += [time.time()]
# Backward + optimize
loss.backward()
if config.grad_clip_norm > 0:
# torch.nn.utils.clip_grad_norm_(net.parameters(), config.grad_clip_norm)
torch.nn.utils.clip_grad_value_(
net.parameters(), config.grad_clip_norm
)
self.optimizer.step()
torch.cuda.empty_cache()
torch.cuda.synchronize(self.device)
t += [time.time()]
# Average timing
if self.step < 2:
mean_dt = np.array(t[1:]) - np.array(t[:-1])
else:
mean_dt = 0.9 * mean_dt + 0.1 * (np.array(t[1:]) - np.array(t[:-1]))
# Console display (only one per second)
if (t[-1] - last_display) > 1.0:
last_display = t[-1]
message = "e{:03d}-i{:04d} => L={:.3f} acc={:3.0f}% / t(ms): {:5.1f} {:5.1f} {:5.1f})"
print(
message.format(
self.epoch,
self.step,
loss.item(),
100 * acc,
1000 * mean_dt[0],
1000 * mean_dt[1],
1000 * mean_dt[2],
)
)
# Log file
if config.saving:
with open(join(config.saving_path, "training.txt"), "a") as file:
message = "{:d} {:d} {:.3f} {:.3f} {:.3f} {:.3f}\n"
file.write(
message.format(
self.epoch,
self.step,
net.output_loss,
net.reg_loss,
acc,
t[-1] - t0,
)
)
self.step += 1
##############
# End of epoch
##############
# Check kill signal (running_PID.txt deleted)
if config.saving and not exists(PID_file):
break
# Update learning rate
if self.epoch in config.lr_decays:
for param_group in self.optimizer.param_groups:
param_group["lr"] *= config.lr_decays[self.epoch]
# Update epoch
self.epoch += 1
# Saving
if config.saving:
# Get current state dict
save_dict = {
"epoch": self.epoch,
"model_state_dict": net.state_dict(),
"optimizer_state_dict": self.optimizer.state_dict(),
"saving_path": config.saving_path,
}
# Save current state of the network (for restoring purposes)
checkpoint_path = join(checkpoint_directory, "current_chkp.tar")
torch.save(save_dict, checkpoint_path)
# Save checkpoints occasionally
if (self.epoch + 1) % config.checkpoint_gap == 0:
checkpoint_path = join(
checkpoint_directory, "chkp_{:04d}.tar".format(self.epoch + 1)
)
torch.save(save_dict, checkpoint_path)
# Validation
net.eval()
self.validation(net, val_loader, config)
net.train()
print("Finished Training")
return
# Validation methods
# ------------------------------------------------------------------------------------------------------------------
def validation(self, net, val_loader, config: Config):
if config.dataset_task == "classification":
self.object_classification_validation(net, val_loader, config)
elif config.dataset_task == "segmentation":
self.object_segmentation_validation(net, val_loader, config)
elif config.dataset_task == "cloud_segmentation":
self.cloud_segmentation_validation(net, val_loader, config)
elif config.dataset_task == "slam_segmentation":
self.slam_segmentation_validation(net, val_loader, config)
else:
raise ValueError("No validation method implemented for this network type")
def object_classification_validation(self, net, val_loader, config):
"""
Perform a round of validation and show/save results
:param net: network object
:param val_loader: data loader for validation set
:param config: configuration object
"""
############
# Initialize
############
# Choose validation smoothing parameter (0 for no smothing, 0.99 for big smoothing)
val_smooth = 0.95
# Number of classes predicted by the model
nc_model = config.num_classes
softmax = torch.nn.Softmax(1)
# Initialize global prediction over all models
if not hasattr(self, "val_probs"):
self.val_probs = np.zeros((val_loader.dataset.num_models, nc_model))
#####################
# Network predictions
#####################
probs = []
targets = []
obj_inds = []
t = [time.time()]
last_display = time.time()
mean_dt = np.zeros(1)
# Start validation loop
for batch in val_loader:
# New time
t = t[-1:]
t += [time.time()]
if "cuda" in self.device.type:
batch.to(self.device)
# Forward pass
outputs = net(batch, config)
# Get probs and labels
probs += [softmax(outputs).cpu().detach().numpy()]
targets += [batch.labels.cpu().numpy()]
obj_inds += [batch.model_inds.cpu().numpy()]
torch.cuda.synchronize(self.device)
# Average timing
t += [time.time()]
mean_dt = 0.95 * mean_dt + 0.05 * (np.array(t[1:]) - np.array(t[:-1]))
# Display
if (t[-1] - last_display) > 1.0:
last_display = t[-1]
message = "Validation : {:.1f}% (timings : {:4.2f} {:4.2f})"
print(
message.format(
100 * len(obj_inds) / config.validation_size,
1000 * (mean_dt[0]),
1000 * (mean_dt[1]),
)
)
# Stack all validation predictions
probs = np.vstack(probs)
targets = np.hstack(targets)
obj_inds = np.hstack(obj_inds)
###################
# Voting validation
###################
self.val_probs[obj_inds] = (
val_smooth * self.val_probs[obj_inds] + (1 - val_smooth) * probs
)
############
# Confusions
############
validation_labels = np.array(val_loader.dataset.label_values)
# Compute classification results
C1 = fast_confusion(targets, np.argmax(probs, axis=1), validation_labels)
# Compute votes confusion
C2 = fast_confusion(
val_loader.dataset.input_labels,
np.argmax(self.val_probs, axis=1),
validation_labels,
)
# Saving (optionnal)
if config.saving:
print("Save confusions")
conf_list = [C1, C2]
file_list = ["val_confs.txt", "vote_confs.txt"]
for conf, conf_file in zip(conf_list, file_list):
test_file = join(config.saving_path, conf_file)
if exists(test_file):
with open(test_file, "a") as text_file:
for line in conf:
for value in line:
text_file.write("%d " % value)
text_file.write("\n")
else:
with open(test_file, "w") as text_file:
for line in conf:
for value in line:
text_file.write("%d " % value)
text_file.write("\n")
val_ACC = 100 * np.sum(np.diag(C1)) / (np.sum(C1) + 1e-6)
vote_ACC = 100 * np.sum(np.diag(C2)) / (np.sum(C2) + 1e-6)
print("Accuracies : val = {:.1f}% / vote = {:.1f}%".format(val_ACC, vote_ACC))
return C1
def cloud_segmentation_validation(self, net, val_loader, config, debug=False):
"""
Validation method for cloud segmentation models
"""
############
# Initialize
############
t0 = time.time()
# Choose validation smoothing parameter (0 for no smothing, 0.99 for big smoothing)
val_smooth = 0.95
softmax = torch.nn.Softmax(1)
# Do not validate if dataset has no validation cloud
if val_loader.dataset.validation_split not in val_loader.dataset.all_splits:
return
# Number of classes including ignored labels
nc_tot = val_loader.dataset.num_classes
# Number of classes predicted by the model
nc_model = config.num_classes
# print(nc_tot)
# print(nc_model)
# Initiate global prediction over validation clouds
if not hasattr(self, "validation_probs"):
self.validation_probs = [
np.zeros((l.shape[0], nc_model))
for l in val_loader.dataset.input_labels
]
self.val_proportions = np.zeros(nc_model, dtype=np.float32)
i = 0
for label_value in val_loader.dataset.label_values:
if label_value not in val_loader.dataset.ignored_labels:
self.val_proportions[i] = np.sum(
[
np.sum(labels == label_value)
for labels in val_loader.dataset.validation_labels
]
)
i += 1
#####################
# Network predictions
#####################
predictions = []
targets = []
t = [time.time()]
last_display = time.time()
mean_dt = np.zeros(1)
t1 = time.time()
# Start validation loop
for i, batch in enumerate(val_loader):
# New time
t = t[-1:]
t += [time.time()]
if "cuda" in self.device.type:
batch.to(self.device)
# Forward pass
outputs = net(batch, config)
# Get probs and labels
stacked_probs = softmax(outputs).cpu().detach().numpy()
labels = batch.labels.cpu().numpy()
lengths = batch.lengths[0].cpu().numpy()
in_inds = batch.input_inds.cpu().numpy()
cloud_inds = batch.cloud_inds.cpu().numpy()
torch.cuda.synchronize(self.device)
# Get predictions and labels per instance
# ***************************************
i0 = 0
for b_i, length in enumerate(lengths):
# Get prediction
target = labels[i0 : i0 + length]
probs = stacked_probs[i0 : i0 + length]
inds = in_inds[i0 : i0 + length]
c_i = cloud_inds[b_i]
# Update current probs in whole cloud
self.validation_probs[c_i][inds] = (
val_smooth * self.validation_probs[c_i][inds]
+ (1 - val_smooth) * probs
)
# Stack all prediction for this epoch
predictions.append(probs)
targets.append(target)
i0 += length
# Average timing
t += [time.time()]
mean_dt = 0.95 * mean_dt + 0.05 * (np.array(t[1:]) - np.array(t[:-1]))
# Display
if (t[-1] - last_display) > 1.0:
last_display = t[-1]
message = "Validation : {:.1f}% (timings : {:4.2f} {:4.2f})"
print(
message.format(
100 * i / config.validation_size,
1000 * (mean_dt[0]),
1000 * (mean_dt[1]),
)
)
t2 = time.time()
# Confusions for our subparts of validation set
Confs = np.zeros((len(predictions), nc_tot, nc_tot), dtype=np.int32)
for i, (probs, truth) in enumerate(zip(predictions, targets)):
# Insert false columns for ignored labels
for l_ind, label_value in enumerate(val_loader.dataset.label_values):
if label_value in val_loader.dataset.ignored_labels:
probs = np.insert(probs, l_ind, 0, axis=1)
# Predicted labels
preds = val_loader.dataset.label_values[np.argmax(probs, axis=1)]
# Confusions
Confs[i, :, :] = fast_confusion(
truth, preds, val_loader.dataset.label_values
).astype(np.int32)
t3 = time.time()
# Sum all confusions
C = np.sum(Confs, axis=0).astype(np.float32)
# Remove ignored labels from confusions
for l_ind, label_value in reversed(
list(enumerate(val_loader.dataset.label_values))
):
if label_value in val_loader.dataset.ignored_labels:
C = np.delete(C, l_ind, axis=0)
C = np.delete(C, l_ind, axis=1)
# Balance with real validation proportions
C *= np.expand_dims(self.val_proportions / (np.sum(C, axis=1) + 1e-6), 1)
t4 = time.time()
# Objects IoU
IoUs = IoU_from_confusions(C)
t5 = time.time()
# Saving (optionnal)
if config.saving:
# Name of saving file
test_file = join(config.saving_path, "val_IoUs.txt")
# Line to write:
line = ""
for IoU in IoUs:
line += "{:.3f} ".format(IoU)
line = line + "\n"
# Write in file
if exists(test_file):
with open(test_file, "a") as text_file:
text_file.write(line)
else:
with open(test_file, "w") as text_file:
text_file.write(line)
# Save potentials
if val_loader.dataset.use_potentials:
pot_path = join(config.saving_path, "potentials")
if not exists(pot_path):
makedirs(pot_path)
files = val_loader.dataset.files
for i, file_path in enumerate(files):
pot_points = np.array(
val_loader.dataset.pot_trees[i].data, copy=False
)
cloud_name = file_path.split("/")[-1]
pot_name = join(pot_path, cloud_name)
pots = val_loader.dataset.potentials[i].numpy().astype(np.float32)
write_ply(
pot_name,
[pot_points.astype(np.float32), pots],
["x", "y", "z", "pots"],
)
t6 = time.time()
# Print instance mean
mIoU = 100 * np.mean(IoUs)
print("{:s} mean IoU = {:.1f}%".format(config.dataset, mIoU))
# Save predicted cloud occasionally
if config.saving and (self.epoch + 1) % config.checkpoint_gap == 0:
val_path = join(config.saving_path, "val_preds_{:d}".format(self.epoch + 1))
if not exists(val_path):
makedirs(val_path)
files = val_loader.dataset.files
for i, file_path in enumerate(files):
# Get points
points = val_loader.dataset.load_evaluation_points(file_path)
# Get probs on our own ply points
sub_probs = self.validation_probs[i]
# Insert false columns for ignored labels
for l_ind, label_value in enumerate(val_loader.dataset.label_values):
if label_value in val_loader.dataset.ignored_labels:
sub_probs = np.insert(sub_probs, l_ind, 0, axis=1)
# Get the predicted labels
sub_preds = val_loader.dataset.label_values[
np.argmax(sub_probs, axis=1).astype(np.int32)
]
# Reproject preds on the evaluations points
preds = (sub_preds[val_loader.dataset.test_proj[i]]).astype(np.int32)
# Path of saved validation file
cloud_name = file_path.split("/")[-1]
val_name = join(val_path, cloud_name)
# Save file
labels = val_loader.dataset.validation_labels[i].astype(np.int32)
write_ply(
val_name, [points, preds, labels], ["x", "y", "z", "preds", "class"]
)
# Display timings
t7 = time.time()
if debug:
print("\n************************\n")
print("Validation timings:")
print("Init ...... {:.1f}s".format(t1 - t0))
print("Loop ...... {:.1f}s".format(t2 - t1))
print("Confs ..... {:.1f}s".format(t3 - t2))
print("Confs bis . {:.1f}s".format(t4 - t3))
print("IoU ....... {:.1f}s".format(t5 - t4))
print("Save1 ..... {:.1f}s".format(t6 - t5))
print("Save2 ..... {:.1f}s".format(t7 - t6))
print("\n************************\n")
return
def slam_segmentation_validation(self, net, val_loader, config, debug=True):
"""
Validation method for slam segmentation models
"""
############
# Initialize
############
t0 = time.time()
# Do not validate if dataset has no validation cloud
if val_loader is None:
return
# Choose validation smoothing parameter (0 for no smothing, 0.99 for big smoothing)
softmax = torch.nn.Softmax(1)
# Create folder for validation predictions
if not exists(join(config.saving_path, "val_preds")):
makedirs(join(config.saving_path, "val_preds"))
# initiate the dataset validation containers
val_loader.dataset.val_points = []
val_loader.dataset.val_labels = []
# Number of classes including ignored labels
nc_tot = val_loader.dataset.num_classes
#####################
# Network predictions
#####################
predictions = []
targets = []
inds = []
val_i = 0
t = [time.time()]
last_display = time.time()
mean_dt = np.zeros(1)
t1 = time.time()
# Start validation loop
for i, batch in enumerate(val_loader):
# New time
t = t[-1:]
t += [time.time()]
if "cuda" in self.device.type:
batch.to(self.device)
# Forward pass
outputs = net(batch, config)
# Get probs and labels
stk_probs = softmax(outputs).cpu().detach().numpy()
lengths = batch.lengths[0].cpu().numpy()
f_inds = batch.frame_inds.cpu().numpy()
r_inds_list = batch.reproj_inds
r_mask_list = batch.reproj_masks
labels_list = batch.val_labels
torch.cuda.synchronize(self.device)
# Get predictions and labels per instance
# ***************************************
i0 = 0
for b_i, length in enumerate(lengths):
# Get prediction
probs = stk_probs[i0 : i0 + length]
proj_inds = r_inds_list[b_i]
proj_mask = r_mask_list[b_i]
frame_labels = labels_list[b_i]
s_ind = f_inds[b_i, 0]
f_ind = f_inds[b_i, 1]
# Project predictions on the frame points
proj_probs = probs[proj_inds]
# Safe check if only one point:
if proj_probs.ndim < 2:
proj_probs = np.expand_dims(proj_probs, 0)
# Insert false columns for ignored labels
for l_ind, label_value in enumerate(val_loader.dataset.label_values):
if label_value in val_loader.dataset.ignored_labels:
proj_probs = np.insert(proj_probs, l_ind, 0, axis=1)
# Predicted labels
preds = val_loader.dataset.label_values[np.argmax(proj_probs, axis=1)]
# Save predictions in a binary file
filename = "{:s}_{:07d}.npy".format(
val_loader.dataset.sequences[s_ind], f_ind
)
filepath = join(config.saving_path, "val_preds", filename)
if exists(filepath):
frame_preds = np.load(filepath)
else:
frame_preds = np.zeros(frame_labels.shape, dtype=np.uint8)
frame_preds[proj_mask] = preds.astype(np.uint8)
np.save(filepath, frame_preds)
# Save some of the frame pots
if f_ind % 20 == 0:
seq_path = join(
val_loader.dataset.path,
"sequences",
val_loader.dataset.sequences[s_ind],
)
velo_file = join(
seq_path,
"velodyne",
val_loader.dataset.frames[s_ind][f_ind] + ".bin",
)
frame_points = np.fromfile(velo_file, dtype=np.float32)
frame_points = frame_points.reshape((-1, 4))
write_ply(
filepath[:-4] + "_pots.ply",
[frame_points[:, :3], frame_labels, frame_preds],
["x", "y", "z", "gt", "pre"],
)
# Update validation confusions
frame_C = fast_confusion(
frame_labels,
frame_preds.astype(np.int32),
val_loader.dataset.label_values,
)
val_loader.dataset.val_confs[s_ind][f_ind, :, :] = frame_C
# Stack all prediction for this epoch
predictions += [preds]
targets += [frame_labels[proj_mask]]
inds += [f_inds[b_i, :]]
val_i += 1
i0 += length
# Average timing
t += [time.time()]
mean_dt = 0.95 * mean_dt + 0.05 * (np.array(t[1:]) - np.array(t[:-1]))
# Display
if (t[-1] - last_display) > 1.0:
last_display = t[-1]
message = "Validation : {:.1f}% (timings : {:4.2f} {:4.2f})"
print(
message.format(
100 * i / config.validation_size,
1000 * (mean_dt[0]),
1000 * (mean_dt[1]),
)
)
t2 = time.time()
# Confusions for our subparts of validation set
Confs = np.zeros((len(predictions), nc_tot, nc_tot), dtype=np.int32)
for i, (preds, truth) in enumerate(zip(predictions, targets)):
# Confusions
Confs[i, :, :] = fast_confusion(
truth, preds, val_loader.dataset.label_values
).astype(np.int32)
t3 = time.time()
#######################################
# Results on this subpart of validation
#######################################
# Sum all confusions
C = np.sum(Confs, axis=0).astype(np.float32)
# Balance with real validation proportions
C *= np.expand_dims(
val_loader.dataset.class_proportions / (np.sum(C, axis=1) + 1e-6), 1
)
# Remove ignored labels from confusions
for l_ind, label_value in reversed(
list(enumerate(val_loader.dataset.label_values))
):
if label_value in val_loader.dataset.ignored_labels:
C = np.delete(C, l_ind, axis=0)
C = np.delete(C, l_ind, axis=1)
# Objects IoU
IoUs = IoU_from_confusions(C)
#####################################
# Results on the whole validation set
#####################################
t4 = time.time()
# Sum all validation confusions
C_tot = [
np.sum(seq_C, axis=0)
for seq_C in val_loader.dataset.val_confs
if len(seq_C) > 0
]
C_tot = np.sum(np.stack(C_tot, axis=0), axis=0)
if debug:
s = "\n"
for cc in C_tot:
for c in cc:
s += "{:8.1f} ".format(c)
s += "\n"
print(s)
# Remove ignored labels from confusions
for l_ind, label_value in reversed(
list(enumerate(val_loader.dataset.label_values))
):
if label_value in val_loader.dataset.ignored_labels:
C_tot = np.delete(C_tot, l_ind, axis=0)
C_tot = np.delete(C_tot, l_ind, axis=1)
# Objects IoU
val_IoUs = IoU_from_confusions(C_tot)
t5 = time.time()
# Saving (optionnal)
if config.saving:
IoU_list = [IoUs, val_IoUs]
file_list = ["subpart_IoUs.txt", "val_IoUs.txt"]
for IoUs_to_save, IoU_file in zip(IoU_list, file_list):
# Name of saving file
test_file = join(config.saving_path, IoU_file)
# Line to write:
line = ""
for IoU in IoUs_to_save:
line += "{:.3f} ".format(IoU)
line = line + "\n"
# Write in file
if exists(test_file):
with open(test_file, "a") as text_file:
text_file.write(line)
else:
with open(test_file, "w") as text_file:
text_file.write(line)
# Print instance mean
mIoU = 100 * np.mean(IoUs)
print("{:s} : subpart mIoU = {:.1f} %".format(config.dataset, mIoU))
mIoU = 100 * np.mean(val_IoUs)
print("{:s} : val mIoU = {:.1f} %".format(config.dataset, mIoU))
t6 = time.time()
# Display timings
if debug:
print("\n************************\n")
print("Validation timings:")
print("Init ...... {:.1f}s".format(t1 - t0))
print("Loop ...... {:.1f}s".format(t2 - t1))
print("Confs ..... {:.1f}s".format(t3 - t2))
print("IoU1 ...... {:.1f}s".format(t4 - t3))
print("IoU2 ...... {:.1f}s".format(t5 - t4))
print("Save ...... {:.1f}s".format(t6 - t5))
print("\n************************\n")
return