LION/third_party/ChamferDistancePytorch/chamfer6D/dist_chamfer_6D.py

83 lines
2.7 KiB
Python
Raw Normal View History

2023-01-23 05:14:49 +00:00
from torch import nn
from torch.autograd import Function
import torch
import importlib
import os
chamfer_found = importlib.find_loader("chamfer_6D") is not None
if not chamfer_found:
## Cool trick from https://github.com/chrdiller
print("Jitting Chamfer 6D")
cur_path = os.path.dirname(os.path.abspath(__file__))
build_path = cur_path.replace('chamfer6D', 'tmp')
os.makedirs(build_path, exist_ok=True)
from torch.utils.cpp_extension import load
chamfer_6D = load(name="chamfer_6D",
sources=[
"/".join(os.path.abspath(__file__).split('/')[:-1] + ["chamfer_cuda.cpp"]),
"/".join(os.path.abspath(__file__).split('/')[:-1] + ["chamfer6D.cu"]),
], build_directory=build_path)
print("Loaded JIT 6D CUDA chamfer distance")
else:
import chamfer_6D
print("Loaded compiled 6D CUDA chamfer distance")
# Chamfer's distance module @thibaultgroueix
# GPU tensors only
class chamfer_6DFunction(Function):
@staticmethod
def forward(ctx, xyz1, xyz2):
batchsize, n, dim = xyz1.size()
assert dim==6, "Wrong last dimension for the chamfer distance 's input! Check with .size()"
_, m, dim = xyz2.size()
assert dim==6, "Wrong last dimension for the chamfer distance 's input! Check with .size()"
device = xyz1.device
device = xyz1.device
dist1 = torch.zeros(batchsize, n)
dist2 = torch.zeros(batchsize, m)
idx1 = torch.zeros(batchsize, n).type(torch.IntTensor)
idx2 = torch.zeros(batchsize, m).type(torch.IntTensor)
dist1 = dist1.to(device)
dist2 = dist2.to(device)
idx1 = idx1.to(device)
idx2 = idx2.to(device)
torch.cuda.set_device(device)
chamfer_6D.forward(xyz1, xyz2, dist1, dist2, idx1, idx2)
ctx.save_for_backward(xyz1, xyz2, idx1, idx2)
return dist1, dist2, idx1, idx2
@staticmethod
def backward(ctx, graddist1, graddist2, gradidx1, gradidx2):
xyz1, xyz2, idx1, idx2 = ctx.saved_tensors
graddist1 = graddist1.contiguous()
graddist2 = graddist2.contiguous()
device = graddist1.device
gradxyz1 = torch.zeros(xyz1.size())
gradxyz2 = torch.zeros(xyz2.size())
gradxyz1 = gradxyz1.to(device)
gradxyz2 = gradxyz2.to(device)
chamfer_6D.backward(
xyz1, xyz2, gradxyz1, gradxyz2, graddist1, graddist2, idx1, idx2
)
return gradxyz1, gradxyz2
class chamfer_6DDist(nn.Module):
def __init__(self):
super(chamfer_6DDist, self).__init__()
def forward(self, input1, input2):
input1 = input1.contiguous()
input2 = input2.contiguous()
return chamfer_6DFunction.apply(input1, input2)