run `python demo.py`, will load the released text2shape model on hugging face and generate a chair point cloud.
## Released checkpoint and samples
* will be release soon
* put the downloaded file under `./lion_ckpt/`
## Training
### data
* ShapeNet can be downloaded [here](https://github.com/stevenygd/PointFlow#dataset).
* Put the downloaded data as `./data/ShapeNetCore.v2.PC15k`*or* edit the `pointflow` entry in `./datasets/data_path.py` for the ShapeNet dataset path.
### train VAE
* run `bash ./script/train_vae.sh $NGPU` (the released checkpoint is trained with `NGPU=4`)
### train diffusion prior
* require the vae checkpoint
* run `bash ./script/train_prior.sh $NGPU` (the released checkpoint is trained with `NGPU=8` with 2 node)
### evaluate a trained prior
* download the test data from [here](https://drive.google.com/file/d/1uEp0o6UpRqfYwvRXQGZ5ZgT1IYBQvUSV/view?usp=share_link), unzip and put it as `./datasets/test_data/`
bash ./script/eval.sh $checkpoint # will take 1-2 hour
```
## Evaluate the samples with the 1-NNA metrics
* download the test data from [here](https://drive.google.com/file/d/1uEp0o6UpRqfYwvRXQGZ5ZgT1IYBQvUSV/view?usp=share_link), unzip and put it as `./datasets/test_data/`
* run `python ./script/compute_score.py`
## Citation
```
@inproceedings{zeng2022lion,
title={LION: Latent Point Diffusion Models for 3D Shape Generation},
author={Xiaohui Zeng and Arash Vahdat and Francis Williams and Zan Gojcic and Or Litany and Sanja Fidler and Karsten Kreis},
booktitle={Advances in Neural Information Processing Systems (NeurIPS)},