40 lines
1.4 KiB
Bash
40 lines
1.4 KiB
Bash
|
DATA=" ddpm.input_dim 3 data.cates car "
|
||
|
NGPU=$1 #
|
||
|
num_node=1
|
||
|
mem=40
|
||
|
BS=32
|
||
|
|
||
|
ENT="python train_dist.py --num_process_per_node $NGPU "
|
||
|
kl=0.5
|
||
|
lr=1e-3
|
||
|
latent=1
|
||
|
skip_weight=0.01
|
||
|
sigma_offset=6.0
|
||
|
loss='l1_sum'
|
||
|
|
||
|
$ENT ddpm.num_steps 1 ddpm.ema 0 \
|
||
|
trainer.opt.vae_lr_warmup_epochs 0 \
|
||
|
latent_pts.ada_mlp_init_scale 0.1 \
|
||
|
sde.kl_const_coeff_vada 1e-7 \
|
||
|
trainer.anneal_kl 1 sde.kl_max_coeff_vada $kl \
|
||
|
sde.kl_anneal_portion_vada 0.5 \
|
||
|
shapelatent.log_sigma_offset $sigma_offset latent_pts.skip_weight $skip_weight \
|
||
|
trainer.opt.beta2 0.99 \
|
||
|
data.num_workers 4 \
|
||
|
ddpm.loss_weight_emd 1.0 \
|
||
|
trainer.epochs 8000 data.random_subsample 1 \
|
||
|
viz.viz_freq -400 viz.log_freq -1 viz.val_freq 200 \
|
||
|
data.batch_size $BS viz.save_freq 2000 \
|
||
|
trainer.type 'trainers.hvae_trainer' \
|
||
|
model_config default shapelatent.model 'models.vae_adain' \
|
||
|
shapelatent.decoder_type 'models.latent_points_ada.LatentPointDecPVC' \
|
||
|
shapelatent.encoder_type 'models.latent_points_ada.PointTransPVC' \
|
||
|
latent_pts.style_encoder 'models.shapelatent_modules.PointNetPlusEncoder' \
|
||
|
shapelatent.prior_type normal \
|
||
|
shapelatent.latent_dim $latent trainer.opt.lr $lr \
|
||
|
shapelatent.kl_weight ${kl} \
|
||
|
shapelatent.decoder_num_points 2048 \
|
||
|
data.tr_max_sample_points 2048 data.te_max_sample_points 2048 \
|
||
|
ddpm.loss_type $loss cmt "lion" \
|
||
|
$DATA viz.viz_order [2,0,1] data.recenter_per_shape False data.normalize_global True
|